Skip to main content

Density Functions of Periodic Sequences

Part of the Lecture Notes in Computer Science book series (LNCS,volume 13493)

Abstract

This paper contributes to the emergent area of Periodic Geometry, which studies continuous spaces of solid crystalline materials (crystals) by new methods of metric geometry. Since crystal structures are determined in a rigid form, their strongest practical equivalence is rigid motion or isometry preserving inter-point distances. The most fundamental model of any crystal is a periodic set of points at all atomic centers. The previous work introduced an infinite sequence of density functions that are continuous isometry invariants of periodic point sets. These density functions turned out to be highly non-trivial even in dimension 1 for periodic sequences of points in the line. This paper fully describes the density functions of any periodic sequence and their symmetry properties. The explicit description confirms coincidences of density functions that were previously computed via finite samples.

Keywords

  • Periodic sequence
  • Isometry invariant
  • Density functions

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-031-19897-7_31
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-031-19897-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

References

  1. Anosova, O., Kurlin, V.: Introduction to periodic geometry and topology (2021). https://arxiv.org/abs/2103.02749

  2. Anosova, O., Kurlin, V.: Algorithms for continuous metrics on periodic crystals (2022). https://arxiv.org/abs/2205.15298

  3. Bright, M., Cooper, A.I., Kurlin, V.: Geographic-style maps for 2-dimensional lattices (2021). https://arxiv.org/abs/2109.10885

  4. Bright, M., Cooper, A.I., Kurlin, V.: Welcome to a continuous world of 3-dimensional lattices (2021). https://arxiv.org/abs/2109.11538

  5. Edelsbrunner, H., Heiss, T., Kurlin, V., Smith, P., Wintraecken, M.: The density fingerprint of a periodic point set. In: SoCG, vol. 189, pp. 32:1–32:16 (2021)

    Google Scholar 

  6. Grünbaum, F., Moore, C.: The use of higher-order invariants in the determination of generalized Patterson cyclotomic sets. Acta Cryst. A 51, 310–323 (1995)

    CrossRef  MathSciNet  Google Scholar 

  7. Kurlin, V.: A complete isometry classification of 3-dimensional lattices (2022). https://arxiv.org/abs/2201.10543

  8. Kurlin, V.: A computable and continuous metric on isometry classes of high-dimensional periodic sequences (2022). https://arxiv.org/abs/2205.04388

  9. Kurlin, V.: Mathematics of 2-dimensional lattices. arxiv:2201.05150 (2022)

  10. Mosca, M., Kurlin, V.: Voronoi-based similarity distances between arbitrary crystal lattices. Cryst. Res. Technol. 55(5), 1900197 (2020)

    CrossRef  Google Scholar 

  11. Pozdnyakov, S., et al.: Incompleteness of atomic structure representations. Phys. Rev. Let. 125, 166001 (2020)

    CrossRef  MathSciNet  Google Scholar 

  12. Ropers, J., et al.: Fast predictions of lattice energies by continuous isometry invariants. In: Proceedings of DAMDID 2021. https://arxiv.org/abs/2108.07233

  13. Widdowson, D., Kurlin, V.: Resolving the data ambiguity for periodic crystals. Adva. Neural Inf. Proc. Syst. 35 (NeurIPS 2022). arXiv:2108.04798

  14. Widdowson, D., et al.: Average minimum distances of periodic point sets. MATCH Commun. Math. Comput. Chem. 87, 529–559 (2022)

    CrossRef  Google Scholar 

  15. Zhu, Q., et al.: Analogy powered by prediction and structural invariants. J. Am. Chem. Soc. 144, 9893–9901 (2022). https://doi.org/10.1021/jacs.2c02653

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaliy Kurlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Anosova, O., Kurlin, V. (2022). Density Functions of Periodic Sequences. In: Baudrier, É., Naegel, B., Krähenbühl, A., Tajine, M. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2022. Lecture Notes in Computer Science, vol 13493. Springer, Cham. https://doi.org/10.1007/978-3-031-19897-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19897-7_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19896-0

  • Online ISBN: 978-3-031-19897-7

  • eBook Packages: Computer ScienceComputer Science (R0)