Skip to main content

A Simple Discrete Calculus for Digital Surfaces

  • Conference paper
  • First Online:
Discrete Geometry and Mathematical Morphology (DGMM 2022)

Abstract

Computing differential quantities or solving partial derivative equations on discrete surfaces is at the core of many geometry processing and simulation tasks. For digital surfaces in \(\mathbb {Z}^3\) (boundary of voxels), several challenges arise when trying to define a discrete calculus framework on such surfaces mimicking the continuous one: the vertex positions and the geometry of faces do not capture well the geometry of the underlying smooth Euclidean object, even when refined asymptotically. Furthermore, the surface may not be a combinatorial 2-manifold even for discretizations of smooth regular shape. In this paper, we adapt a discrete differential calculus defined on polygonal meshes to the specific case of digital surfaces. We show that this discrete differential calculus accurately mimics the continuous calculus operating on the underlying smooth object, through several experiments: convergence of gradient and weak Laplace operators, spectral analysis and geodesic computations, mean curvature approximation and tolerance to non-manifold locii.

This work has been partly funded by CoMeDiC ANR-15-CE40-0006 research grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnold, D.N., Falk, R.S., Winther, R.: Differential complexes and stability of finite element methods I. The de Rham complex. In: Arnold, D.N., Bochev, P.B., Lehoucq, R.B., Nicolaides, R.A., Shashkov, M. (eds.) Compatible Spatial Discretizations. The IMA Volumes in Mathematics and its Applications, vol. 142, pp. 23–46. Springer, Heidelberg (2006). https://doi.org/10.1007/0-387-38034-5_2

    Chapter  Google Scholar 

  2. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer 15, 1–155 (2006)

    Article  MathSciNet  Google Scholar 

  3. Caissard, T., Coeurjolly, D., Lachaud, J.O., Roussillon, T.: Laplace-beltrami operator on digital surfaces. J. Math. Imaging Vis. 61(3), 359–379 (2019). https://doi.org/10.1007/s10851-018-0839-4

    Article  MathSciNet  MATH  Google Scholar 

  4. Coeurjolly, D., Klette, R.: A comparative evaluation of length estimators of digital curves. IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 252–258 (2004)

    Article  Google Scholar 

  5. Crane, K., Weischedel, C., Wardetzky, M.: The heat method for distance computation. Commun. ACM 60(11), 90–99 (2017). https://doi.org/gcj3hk

  6. De Goes, F., Butts, A., Desbrun, M.: Discrete differential operators on polygonal meshes. ACM Trans. Graph. (TOG) 39(4), 110–1 (2020)

    Google Scholar 

  7. Desbrun, M., Hirani, A.N., Leok, M., Marsden, J.E.: Discrete exterior calculus. arXiv preprint math/0508341 (2005)

    Google Scholar 

  8. Grady, L.J., Polimeni, J.: Discrete Calculus: Applied Analysis on Graphs for Computational Science. Springer, Heidelberg (2010). https://doi.org/10.1007/978-1-84996-290-2

    Book  MATH  Google Scholar 

  9. Hildebrandt, K., Polthier, K.: On approximation of the Laplace-Beltrami operator and the Willmore energy of surfaces. In: Computer Graphics Forum, vol. 30, pp. 1513–1520. Wiley Online Library (2011)

    Google Scholar 

  10. Hildebrandt, K., Polthier, K., Wardetzky, M.: On the convergence of metric and geometric properties of polyhedral surfaces. Geom. Dedicata. 123(1), 89–112 (2006). https://doi.org/10.1007/s10711-006-9109-5

    Article  MathSciNet  MATH  Google Scholar 

  11. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann (2004)

    Google Scholar 

  12. Lachaud, J.-O., Coeurjolly, D., Levallois, J.: Robust and convergent curvature and normal estimators with digital integral invariants. In: Najman, L., Romon, P. (eds.) Modern Approaches to Discrete Curvature. LNM, vol. 2184, pp. 293–348. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58002-9_9

    Chapter  MATH  Google Scholar 

  13. Lachaud, J.O., Romon, P., Thibert, B., Coeurjolly, D.: Interpolated corrected curvature measures for polygonal surfaces. In: Computer Graphics Forum (Proceedings of Symposium on Geometry Processing), vol. 39, no. 5 (2020). https://doi.org/gmt2mq

  14. Lachaud, J.O., Thibert, B.: Properties of gauss digitized shapes and digital surface integration. J. Math. Imaging Vis. 54(2), 162–180 (2016)

    Article  MathSciNet  Google Scholar 

  15. Lévy, B., Zhang, H.: Spectral mesh processing. In: ACM SIGGRAPH 2010 Courses, pp. 1–312 (2010)

    Google Scholar 

  16. Mercat, C.: Discrete complex structure on surfel surfaces. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 153–164. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79126-3_15

    Chapter  MATH  Google Scholar 

  17. Sullivan, J.M.: Curvatures of smooth and discrete surfaces. In: Bobenko, A.I., Sullivan, J.M., Schröder, P., Ziegler, G.M. (eds.) Discrete Differential Geometry. Oberwolfach Seminars, vol. 38, pp. 175–188. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-7643-8621-4_9

    Chapter  MATH  Google Scholar 

  18. The DGtal Project: DGtal (2010). https://dgtal.org

  19. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Mod. Methods Appl. Sci. 23(01), 199–214 (2013)

    Google Scholar 

  20. Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: The hitchhiker’s guide to the virtual element method. Math. Mod. Methods Appl. Sci. 24(08), 1541–1573 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Coeurjolly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Coeurjolly, D., Lachaud, JO. (2022). A Simple Discrete Calculus for Digital Surfaces. In: Baudrier, É., Naegel, B., Krähenbühl, A., Tajine, M. (eds) Discrete Geometry and Mathematical Morphology. DGMM 2022. Lecture Notes in Computer Science, vol 13493. Springer, Cham. https://doi.org/10.1007/978-3-031-19897-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19897-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19896-0

  • Online ISBN: 978-3-031-19897-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics