Skip to main content

Pixel-Wise Energy-Biased Abstention Learning for Anomaly Segmentation on Complex Urban Driving Scenes

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13699))

Included in the following conference series:

Abstract

State-of-the-art (SOTA) anomaly segmentation approaches on complex urban driving scenes explore pixel-wise classification uncertainty learned from outlier exposure, or external reconstruction models. However, previous uncertainty approaches that directly associate high uncertainty to anomaly may sometimes lead to incorrect anomaly predictions, and external reconstruction models tend to be too inefficient for real-time self-driving embedded systems. In this paper, we propose a new anomaly segmentation method, named pixel-wise energy-biased abstention learning (PEBAL), that explores pixel-wise abstention learning (AL) with a model that learns an adaptive pixel-level anomaly class, and an energy-based model (EBM) that learns inlier pixel distribution. More specifically, PEBAL is based on a non-trivial joint training of EBM and AL, where EBM is trained to output high-energy for anomaly pixels (from outlier exposure) and AL is trained such that these high-energy pixels receive adaptive low penalty for being included to the anomaly class. We extensively evaluate PEBAL against the SOTA and show that it achieves the best performance across four benchmarks. Code is available at https://github.com/tianyu0207/PEBAL.

Y. Tian and Y. Liu—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Supported by Australian Research Council through grants DP180103232 and FT190100525.

References

  1. Baur, C., Wiestler, B., Albarqouni, S., Navab, N.: Deep autoencoding models for unsupervised anomaly segmentation in brain MR images. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 161–169. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11723-8_16

    Chapter  Google Scholar 

  2. Bevandić, P., Krešo, I., Oršić, M., Šegvić, S.: Simultaneous semantic segmentation and outlier detection in presence of domain shift. In: Fink, G.A., Frintrop, S., Jiang, X. (eds.) DAGM GCPR 2019. LNCS, vol. 11824, pp. 33–47. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33676-9_3

    Chapter  Google Scholar 

  3. Bevandić, P., Krešo, I., Oršić, M., Šegvić, S.: Discriminative out-of-distribution detection for semantic segmentation. arXiv preprint arXiv:1808.07703 (2018)

  4. Blum, H., Sarlin, P.E., Nieto, J., Siegwart, R., Cadena, C.: The fishyscapes benchmark: measuring blind spots in semantic segmentation. arXiv preprint arXiv:1904.03215 (2019)

  5. Chan, R., et al.: Segmentmeifyoucan: a benchmark for anomaly segmentation. NeurIPS (2021)

    Google Scholar 

  6. Chan, R., Rottmann, M., Gottschalk, H.: Entropy maximization and meta classification for out-of-distribution detection in semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5128–5137 (2021)

    Google Scholar 

  7. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European conference on computer vision (ECCV), pp. 801–818 (2018)

    Google Scholar 

  8. Chen, Y., Tian, Y., Pang, G., Carneiro, G.: Deep one-class classification via interpolated gaussian descriptor (2021)

    Google Scholar 

  9. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

  10. Creusot, C., Munawar, A.: Real-time small obstacle detection on highways using compressive RBM road reconstruction. In: 2015 IEEE Intelligent Vehicles Symposium (IV), pp. 162–167. IEEE (2015)

    Google Scholar 

  11. Di Biase, G., Blum, H., Siegwart, R., Cadena, C.: Pixel-wise anomaly detection in complex driving scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16918–16927 (2021)

    Google Scholar 

  12. El-Yaniv, R., et al.: On the foundations of noise-free selective classification. J. Mach. Learn. Res. 11(5) (2010)

    Google Scholar 

  13. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  14. Grathwohl, W., Wang, K.C., Jacobsen, J.H., Duvenaud, D., Norouzi, M., Swersky, K.: Your classifier is secretly an energy based model and you should treat it like one. arXiv preprint arXiv:1912.03263 (2019)

  15. Grcić, M., Bevandić, P., Šegvić, S.: Dense anomaly detection by robust learning on synthetic negative data. arXiv preprint arXiv:2112.12833 (2021)

  16. Haldimann, D., Blum, H., Siegwart, R., Cadena, C.: This is not what i imagined: error detection for semantic segmentation through visual dissimilarity. arXiv preprint arXiv:1909.00676 (2019)

  17. Hendrycks, D., Basart, S., Mazeika, M., Mostajabi, M., Steinhardt, J., Song, D.: Scaling out-of-distribution detection for real-world settings. arXiv preprint arXiv:1911.11132 (2019)

  18. Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. arXiv preprint arXiv:1610.02136 (2016)

  19. Hendrycks, D., Mazeika, M., Dietterich, T.: Deep anomaly detection with outlier exposure. arXiv preprint arXiv:1812.04606 (2018)

  20. Jung, S., Lee, J., Gwak, D., Choi, S., Choo, J.: Standardized max logits: a simple yet effective approach for identifying unexpected road obstacles in urban-scene segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15425–15434 (2021)

    Google Scholar 

  21. Kendall, A., Gal, Y.: What uncertainties do we need in bayesian deep learning for computer vision? arXiv preprint arXiv:1703.04977 (2017)

  22. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. arXiv preprint arXiv:1612.01474 (2016)

  23. Lateef, F., Ruichek, Y.: Survey on semantic segmentation using deep learning techniques. Neurocomputing 338, 321–348 (2019)

    Article  Google Scholar 

  24. LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., Huang, F.: A tutorial on energy-based learning. Predicting Structured Data 1(0) (2006)

    Google Scholar 

  25. Lee, K., Lee, H., Lee, K., Shin, J.: Training confidence-calibrated classifiers for detecting out-of-distribution samples. arXiv preprint arXiv:1711.09325 (2017)

  26. Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-of-distribution samples and adversarial attacks. Advances in Neural Information Processing Systems 31 (2018)

    Google Scholar 

  27. Li, C.L., Sohn, K., Yoon, J., Pfister, T.: Cutpaste: self-supervised learning for anomaly detection and localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9664–9674 (2021)

    Google Scholar 

  28. Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image detection in neural networks. arXiv preprint arXiv:1706.02690 (2017)

  29. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  30. Lis, K., Nakka, K., Fua, P., Salzmann, M.: Detecting the unexpected via image resynthesis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2152–2161 (2019)

    Google Scholar 

  31. Liu, W., Wang, X., Owens, J.D., Li, Y.: Energy-based out-of-distribution detection. arXiv preprint arXiv:2010.03759 (2020)

  32. Liu, Z., Wang, Z., Liang, P.P., Salakhutdinov, R.R., Morency, L.P., Ueda, M.: Deep gamblers: learning to abstain with portfolio theory. Adv. Neural. Inf. Process. Syst. 32, 10623–10633 (2019)

    Google Scholar 

  33. Malinin, A., Gales, M.: Predictive uncertainty estimation via prior networks. arXiv preprint arXiv:1802.10501 (2018)

  34. Mukhoti, J., Gal, Y.: Evaluating bayesian deep learning methods for semantic segmentation. arXiv preprint arXiv:1811.12709 (2018)

  35. Nijkamp, E., Hill, M., Zhu, S.C., Wu, Y.N.: Learning non-convergent non-persistent short-run MCMC toward energy-based model. arXiv preprint arXiv:1904.09770 (2019)

  36. Pinggera, P., Ramos, S., Gehrig, S., Franke, U., Rother, C., Mester, R.: Lost and found: detecting small road hazards for self-driving vehicles. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1099–1106. IEEE (2016)

    Google Scholar 

  37. Sultani, W., Chen, C., Shah, M.: Real-world anomaly detection in surveillance videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6479–6488 (2018)

    Google Scholar 

  38. Vandenhende, S., Georgoulis, S., Proesmans, M., Dai, D., Van Gool, L.: Revisiting multi-task learning in the deep learning era. arXiv preprint arXiv:2004.13379 2 (2020)

  39. Vojir, T., Šipka, T., Aljundi, R., Chumerin, N., Reino, D.O., Matas, J.: Road anomaly detection by partial image reconstruction with segmentation coupling. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15651–15660 (2021)

    Google Scholar 

  40. Xia, Y., Zhang, Y., Liu, F., Shen, W., Yuille, A.L.: Synthesize then compare: detecting failures and anomalies for semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 145–161. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_9

    Chapter  Google Scholar 

  41. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: Cutmix: regularization strategy to train strong classifiers with localizable features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6023–6032 (2019)

    Google Scholar 

  42. Zhu, Y., Sapra, K., Reda, F.A., Shih, K.J., Newsam, S., Tao, A., Catanzaro, B.: Improving semantic segmentation via video propagation and label relaxation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8856–8865 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guansong Pang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4639 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tian, Y., Liu, Y., Pang, G., Liu, F., Chen, Y., Carneiro, G. (2022). Pixel-Wise Energy-Biased Abstention Learning for Anomaly Segmentation on Complex Urban Driving Scenes. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13699. Springer, Cham. https://doi.org/10.1007/978-3-031-19842-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19842-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19841-0

  • Online ISBN: 978-3-031-19842-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics