Abstract
Current methods for LIDAR semantic segmentation are not robust enough for real-world applications, e.g., autonomous driving, since it is closed-set and static. The closed-set assumption makes the network only able to output labels of trained classes, even for objects never seen before, while a static network cannot update its knowledge base according to what it has seen. Therefore, in this work, we propose the open-world semantic segmentation task for LIDAR point clouds, which aims to 1) identify both old and novel classes using open-set semantic segmentation, and 2) gradually incorporate novel objects into the existing knowledge base using incremental learning without forgetting old classes. For this purpose, we propose a REdundAncy cLassifier (REAL) framework to provide a general architecture for both the open-set semantic segmentation and incremental learning problems. The experimental results show that REAL can simultaneously achieves state-of-the-art performance in the open-set semantic segmentation task on the SemanticKITTI and nuScenes datasets, and alleviate the catastrophic forgetting problem with a large margin during incremental learning.
Keywords
- Open-world semantic segmentation
- LIDAR point clouds
- Open-set semantic segmentation
- Incremental learning
code is available at: https://github.com/Jun-CEN/Open_world_3D_semantic_segmentation
This is a preview of subscription content, access via your institution.
Buying options








References
Baur, C., Wiestler, B., Albarqouni, S., Navab, N.: Deep autoencoding models for unsupervised anomaly segmentation in brain MR images. In: International MICCAI Brainlesion Workshop (2018)
Behley, J., et al.: Towards 3D LiDAR-based semantic scene understanding of 3D point cloud sequences: The SemanticKITTI Dataset. In: The International Journal on Robotics Research (2021)
Behley, J., et al.: A Dataset for Semantic Scene Understanding of LiDAR Sequences. In: ICCV (2019)
Bendale, A., Boult, T.: Towards open world recognition. In: CVPR (2015)
Bozhinoski, D., Di Ruscio, D., Malavolta, I., Pelliccione, P., Crnkovic, I.: Safety for mobile robotic systems: A systematic mapping study from a software engineering perspective. J. Syst. Softw. 151 150–179 (2019)
Caesar, H., et al.: nuscenes: A multimodal dataset for autonomous driving. In: CVPR (2020)
Cen, J., Yun, P., Cai, J., Wang, M.Y., Liu, M.: Deep metric learning for open world semantic segmentation. In: ICCV (2021)
Cermelli, F., Mancini, M., Bulo, S.R., Ricci, E., Caputo, B.: Modeling the background for incremental learning in semantic segmentation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 9230–9239 (2020). https://doi.org/10.1109/CVPR42600.2020.00925
Cermelli, F., Mancini, M., Bulo, S.R., Ricci, E., Caputo, B.: Modeling the background for incremental learning in semantic segmentation. In: CVPR (2020)
Cheng, R., Razani, R., Taghavi, E., Li, E., Liu, B.: 2–s3net: Attentive feature fusion with adaptive feature selection for sparse semantic segmentation network. In: CVPR (2021)
Delange, M., et al.: A continual learning survey: Defying forgetting in classification tasks. IEEE Trans. Pattern Analysis Mach. Intell. 44 3366–3385 (2021)
Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In: ICML (2016)
Geiger, A., Lenz, P., Urtasun, R.: Are We Ready for Autonomous Driving? CVPR, The KITTI Vision Benchmark Suite. In (2012)
Hendrycks, D., Basart, S., Mazeika, M., Mostajabi, M., Steinhardt, J., Song, D.: Scaling out-of-distribution detection for real-world settings. arXiv preprint arXiv:1911.11132 (2019)
Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. In: ICLR (2017)
Hu, Q., et al.: Learning semantic segmentation of large-scale point clouds with random sampling. IEEE Trans. Pattern Analysis Mach. Intell. textbf44(11), 8338–8354 (2021)
Joseph, K.J., Khan, S., Khan, F.S., Balasubramanian, V.N.: Towards open world object detection. In: CVPR (2021)
Kendall, A., Gal, Y.: What uncertainties do we need in bayesian deep learning for computer vision? In: NeurIPS (2017)
Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: NeurIPS (2017)
Li, D., Tasci, S., Ghosh, S., Zhu, J., Zhang, J.T., Heck, L.: Rilod: near real-time incremental learning for object detection at the edge. In: Proceedings of the 4th ACM/IEEE Symposium on Edge Computing, pp. 113–126 (2019)
Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Analysis Mach. Intell. 40(12), 2935–2947 (2018)
Lis, K., Nakka, K., Fua, P., Salzmann, M.: Detecting the unexpected via image resynthesis. In: ICCV (2019)
Liu, L., Kuang, Z., Chen, Y., Xue, J., Yang, W., Zhang, W.: Incdet: In defense of elastic weight consolidation for incremental object detection. IEEE Transactions on Neural Networks and Learning Systems, pp. 1–14 (2020)
MacKay, D.J.: Bayesian neural networks and density networks. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment (1995)
McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: The sequential learning problem. In: Psychology of learning and motivation (1989)
Milioto, A., Vizzo, I., Behley, J., Stachniss, C.: Rangenet++: Fast and accurate lidar semantic segmentation. In: IROS (2019)
Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: CVPR (2019)
Peng, C., Zhao, K., Lovell, B.: Faster ilod: Incremental learning for object detectors based on faster rcnn. arXiv preprint arXiv:2003.03901 (2020)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d classification and segmentation. In: CVPR (2017)
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learning on point sets in a metric space. arXiv preprint arXiv:1706.02413 (2017)
Rannen, A., Aljundi, R., Blaschko, M.B., Tuytelaars, T.: Encoder based lifelong learning. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1320–1328 (2017)
Shmelkov, K., Schmid, C., Alahari, K.: Incremental learning of object detectors without catastrophic forgetting. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 3420–3429 (2017)
Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: Kpconv: Flexible and deformable convolution for point clouds. In: ICCV (2019)
Wang, Y., Li, B., Che, T., Zhou, K., Liu, Z., Li, D.: Energy-based open-world uncertainty modeling for confidence calibration. In: ICCV (2021)
Wang, Y., Shi, T., Yun, P., Tai, L., Liu, M.: Pointseg: Real-time semantic segmentation based on 3d lidar point cloud. arXiv preprint arXiv:1807.06288 (2018)
Welling, M., Teh, Y.W.: Bayesian learning via stochastic gradient langevin dynamics. In: ICML, pp. 681–688 (2011)
Wu, B., Zhou, X., Zhao, S., Yue, X., Keutzer, K.: Squeezesegv 2: Improved model structure and unsupervised domain adaptation for road-object segmentation from a lidar point cloud. In: ICRA (2019)
Wu, W., Qi, Z., Fuxin, L.: Pointconv: Deep convolutional networks on 3d point clouds. In: CVPR (2019)
Xia, Y., Zhang, Y., Liu, F., Shen, W., Yuille, A.L.: Synthesize then compare: detecting failures and anomalies for semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 145–161. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_9
Yun, P., Cen, J., Liu, M.: Conflicts between likelihood and knowledge distillation in task incremental learning for 3d object detection. In: 3DV (2021)
Yun, P., Liu, Y., Liu, M.: In defense of knowledge distillation for task incremental learning and its application in 3D object detection. IEEE Robot. Autom. Lett. 6(2), 2012–2019 (2021). https://doi.org/10.1109/LRA.2021.3060417
Zhang, Y., et al.: Polarnet: An improved grid representation for online lidar point clouds semantic segmentation. In: CVPR (2020)
Zhou, D.W., Ye, H.J., Zhan, D.C.: Learning placeholders for open-set recognition. In: CVPR (2021)
Zhu, X., et al.: Cylindrical and asymmetrical 3d convolution networks for lidar segmentation. In: CVPR (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Cen, J. et al. (2022). Open-world Semantic Segmentation for LIDAR Point Clouds. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13698. Springer, Cham. https://doi.org/10.1007/978-3-031-19839-7_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-19839-7_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19838-0
Online ISBN: 978-3-031-19839-7
eBook Packages: Computer ScienceComputer Science (R0)