Skip to main content

Temporal Lift Pooling for Continuous Sign Language Recognition

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

Pooling methods are necessities for modern neural networks for increasing receptive fields and lowering down computational costs. However, commonly used hand-crafted pooling approaches, e.g., max pooling and average pooling, may not well preserve discriminative features. While many researchers have elaborately designed various pooling variants in spatial domain to handle these limitations with much progress, the temporal aspect is rarely visited where directly applying hand-crafted methods or these specialized spatial variants may not be optimal. In this paper, we derive temporal lift pooling (TLP) from the Lifting Scheme in signal processing to intelligently downsample features of different temporal hierarchies. The Lifting Scheme factorizes input signals into various sub-bands with different frequency, which can be viewed as different temporal movement patterns. Our TLP is a three-stage procedure, which performs signal decomposition, component weighting and information fusion to generate a refined downsized feature map. We select a typical temporal task with long sequences, i.e. continuous sign language recognition (CSLR), as our testbed to verify the effectiveness of TLP. Experiments on two large-scale datasets show TLP outperforms hand-crafted methods and specialized spatial variants by a large margin (1.5%) with similar computational overhead. As a robust feature extractor, TLP exhibits great generalizability upon multiple backbones on various datasets and achieves new state-of-the-art results on two large-scale CSLR datasets. Visualizations further demonstrate the mechanism of TLP in correcting gloss borders. Code is released (https://github.com/hulianyuyy/Temporal-Lift-Pooling).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    FLOPs denote floating point operations, which measure the computational costs of models.

References

  1. Boureau, Y.L., Ponce, J., LeCun, Y.: A theoretical analysis of feature pooling in visual recognition. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 111–118 (2010)

    Google Scholar 

  2. Camgoz, N.C., Hadfield, S., Koller, O., Ney, H., Bowden, R.: Neural sign language translation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7784–7793 (2018)

    Google Scholar 

  3. Cheng, K.L., Yang, Z., Chen, Q., Tai, Y.-W.: Fully convolutional networks for continuous sign language recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12369, pp. 697–714. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58586-0_41

    Chapter  Google Scholar 

  4. Cihan Camgoz, N., Hadfield, S., Koller, O., Bowden, R.: SubUNets: end-to-end hand shape and continuous sign language recognition. In: ICCV (2017)

    Google Scholar 

  5. Cui, R., Liu, H., Zhang, C.: Recurrent convolutional neural networks for continuous sign language recognition by staged optimization. In: CVPR (2017)

    Google Scholar 

  6. Cui, R., Liu, H., Zhang, C.: A deep neural framework for continuous sign language recognition by iterative training. TMM 21(7), 1880–1891 (2019)

    Google Scholar 

  7. Dogiwal, S.R., Shishodia, Y.S., Upadhyaya, A.: Efficient lifting scheme based super resolution image reconstruction using low resolution images. In: Kumar Kundu, M., Mohapatra, D.P., Konar, A., Chakraborty, A. (eds.) Advanced Computing, Networking and Informatics- Volume 1. SIST, vol. 27, pp. 259–266. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07353-8_31

    Chapter  Google Scholar 

  8. Freeman, W.T., Roth, M.: Orientation histograms for hand gesture recognition. In: International Workshop on Automatic Face and Gesture Recognition, vol. 12, pp. 296–301. IEEE Computer Society, Washington, DC (1995)

    Google Scholar 

  9. Fukushima, K., Miyake, S.: Neocognitron: a self-organizing neural network model for a mechanism of visual pattern recognition. In: Amari, Si., Arbib, M.A. (eds.) Competition and Cooperation in Neural Nets. LNB, vol. 45, pp. 267–285. Springer, Heidelberg (1982). https://doi.org/10.1007/978-3-642-46466-9_18

  10. Gao, W., Fang, G., Zhao, D., Chen, Y.: A Chinese sign language recognition system based on SOFM/SRN/HMM. Pattern Recognit. 37(12), 2389–2402 (2004)

    Article  MATH  Google Scholar 

  11. Gao, Z., Wang, L., Wu, G.: Lip: local importance-based pooling. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3355–3364 (2019)

    Google Scholar 

  12. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 369–376 (2006)

    Google Scholar 

  13. Gulcehre, C., Cho, K., Pascanu, R., Bengio, Y.: Learned-norm pooling for deep feedforward and recurrent neural networks. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS (LNAI), vol. 8724, pp. 530–546. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44848-9_34

    Chapter  Google Scholar 

  14. Han, J., Awad, G., Sutherland, A.: Modelling and segmenting subunits for sign language recognition based on hand motion analysis. Pattern Recognit. Lett. 30(6), 623–633 (2009)

    Article  Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  16. Howard, A., Zhmoginov, A., Chen, L.C., Sandler, M., Zhu, M.: Inverted residuals and linear bottlenecks: mobile networks for classification, detection and segmentation (2018)

    Google Scholar 

  17. Iandola, F.N., et bal.: Squeezenet: AlexNet-level accuracy with 50x fewer parameters and 0.5 mb model size. arXiv preprint arXiv:1602.07360 (2016)

  18. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)

    Google Scholar 

  19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  20. Koller, O., Camgoz, N.C., Ney, H., Bowden, R.: Weakly supervised learning with multi-stream CNN-LSTM-HMMs to discover sequential parallelism in sign language videos. PAMI 42(9), 2306–2320 (2019)

    Article  Google Scholar 

  21. Koller, O., Forster, J., Ney, H.: Continuous sign language recognition: towards large vocabulary statistical recognition systems handling multiple signers. Comput. Vis. Image Underst. 141, 108–125 (2015)

    Article  Google Scholar 

  22. Koller, O., Zargaran, O., Ney, H., Bowden, R.: Deep sign: hybrid CNN-HMM for continuous sign language recognition. In: Proceedings of the British Machine Vision Conference 2016 (2016)

    Google Scholar 

  23. Koller, O., Zargaran, S., Ney, H.: Re-sign: re-aligned end-to-end sequence modelling with deep recurrent CNN-HMMs. In: CVPR (2017)

    Google Scholar 

  24. LeCun, Y., et al.: Handwritten digit recognition with a back-propagation network. In: Advances in Neural Information Processing Systems 2 (1989)

    Google Scholar 

  25. Min, Y., Hao, A., Chai, X., Chen, X.: Visual alignment constraint for continuous sign language recognition. In: ICCV (2021)

    Google Scholar 

  26. Niu, Z., Mak, B.: Stochastic fine-grained labeling of multi-state sign glosses for continuous sign language recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 172–186. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_11

    Chapter  Google Scholar 

  27. Pesquet-Popescu, B., Bottreau, V.: Three-dimensional lifting schemes for motion compensated video compression. In: 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No. 01CH37221), vol. 3, pp. 1793–1796. IEEE (2001)

    Google Scholar 

  28. Pu, J., Zhou, W., Hu, H., Li, H.: Boosting continuous sign language recognition via cross modality augmentation. In: ACM MM (2020)

    Google Scholar 

  29. Pu, J., Zhou, W., Li, H.: Iterative alignment network for continuous sign language recognition. In: CVPR (2019)

    Google Scholar 

  30. Radosavovic, I., Kosaraju, R.P., Girshick, R., He, K., Dollár, P.: Designing network design spaces. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10428–10436 (2020)

    Google Scholar 

  31. Saeedan, F., Weber, N., Goesele, M., Roth, S.: Detail-preserving pooling in deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9108–9116 (2018)

    Google Scholar 

  32. Stergiou, A., Poppe, R., Kalliatakis, G.: Refining activation downsampling with softpool. arXiv preprint arXiv:2101.00440 (2021)

  33. Sweldens, W.: The lifting scheme: a construction of second generation wavelets. SIAM J. Math. Anal. 29(2), 511–546 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tan, M., et al.: MnasNet: platform-aware neural architecture search for mobile. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2820–2828 (2019)

    Google Scholar 

  35. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  36. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

  37. Wu, Y., Pan, Q., Zhang, H., Zhang, S.: Adaptive denoising based on lifting scheme. In: Proceedings 7th International Conference on Signal Processing, 2004. Proceedings, ICSP 2004, vol. 1, pp. 352–355. IEEE (2004)

    Google Scholar 

  38. Yu, D., Wang, H., Chen, P., Wei, Z.: Mixed pooling for convolutional neural networks. In: Miao, D., Pedrycz, W., Ślȩzak, D., Peters, G., Hu, Q., Wang, R. (eds.) RSKT 2014. LNCS (LNAI), vol. 8818, pp. 364–375. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11740-9_34

    Chapter  Google Scholar 

  39. Zeiler, M.D., Fergus, R.: Stochastic pooling for regularization of deep convolutional neural networks. arXiv preprint arXiv:1301.3557 (2013)

  40. Zhai, S., et al.: S3pool: pooling with stochastic spatial sampling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4970–4978 (2017)

    Google Scholar 

  41. Zhao, J., Snoek, C.G.: Liftpool: bidirectional convnet pooling. arXiv preprint arXiv:2104.00996 (2021)

  42. Zheng, Y., Wang, R., Li, J.: Nonlinear wavelets and BP neural networks adaptive lifting scheme. In: The 2010 International Conference on Apperceiving Computing and Intelligence Analysis Proceeding, pp. 316–319. IEEE (2010)

    Google Scholar 

  43. Zhou, H., Zhou, W., Zhou, Y., Li, H.: Spatial-temporal multi-cue network for continuous sign language recognition. In: AAAI (2020)

    Google Scholar 

Download references

Acknowledgment

This work is supported by NSFC 62072334 Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Feng .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 219 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, L., Gao, L., Liu, Z., Feng, W. (2022). Temporal Lift Pooling for Continuous Sign Language Recognition. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13695. Springer, Cham. https://doi.org/10.1007/978-3-031-19833-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19833-5_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19832-8

  • Online ISBN: 978-3-031-19833-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics