Skip to main content

Generalized Brain Image Synthesis with Transferable Convolutional Sparse Coding Networks

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13694))

Included in the following conference series:

  • 1845 Accesses

Abstract

High inter-equipment variability and expensive examination costs of brain imaging remain key challenges in leveraging the heterogeneous scans effectively. Despite rapid growth in image-to-image translation with deep learning models, the target brain data may not always be achievable due to the specific attributes of brain imaging. In this paper, we present a novel generalized brain image synthesis method, powered by our transferable convolutional sparse coding networks, to address the lack of interpretable cross-modal medical image representation learning. The proposed approach masters the ability to imitate the machine-like anatomically meaningful imaging by translating features directly under a series of mathematical processings, leading to the reduced domain discrepancy while enhancing model transferability. Specifically, we first embed the globally normalized features into a domain discrepancy metric to learn the domain-invariant representations, then optimally preserve domain-specific geometrical property to reflect the intrinsic graph structures, and further penalize their subspace mismatching to reduce the generalization error. The overall framework is cast in a minimax setting, and the extensive experiments show that the proposed method yields state-of-the-art results on multiple datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://brain-development.org/ixi-dataset/.

  2. 2.

    https://www.med.upenn.edu/sbia/brats2018/data.html.

  3. 3.

    Ground truths are calculated through a well-known segmentation tool on the real scans.

  4. 4.

    https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/.

References

  1. IXI – Information eXtraction from Images. https://brain-development.org/ixi-dataset/

  2. Arar, M., Ginger, Y., Danon, D., Bermano, A.H., Cohen-Or, D.: Unsupervised multi-modal image registration via geometry preserving image-to-image translation. In: IEEE CVPR, pp. 13410–13419 (2020)

    Google Scholar 

  3. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  Google Scholar 

  4. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends® Mach. Learn. 3(1), 1–122 (2011)

    Google Scholar 

  5. Bristow, H., Eriksson, A., Lucey, S.: Fast convolutional sparse coding. In: IEEE CVPR. pp. 391–398 (2013)

    Google Scholar 

  6. Choudhury, B., Swanson, R., Heide, F., Wetzstein, G., Heidrich, W.: Consensus convolutional sparse coding. In: IEEE ICCV, pp. 4280–4288 (2017)

    Google Scholar 

  7. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In: SIGGRAPH. pp. 341–346 (2001)

    Google Scholar 

  8. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    Google Scholar 

  9. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  10. Gretton, A., Borgwardt, K., Rasch, M.J., Scholkopf, B., Smola, A.J.: A kernel method for the two-sample problem. arXiv preprint arXiv:0805.2368 (2008)

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE CVPR, pp. 770–778 (2016)

    Google Scholar 

  12. Heide, F., Heidrich, W., Wetzstein, G.: Fast and flexible convolutional sparse coding. In: IEEE CVPR, pp. 5135–5143 (2015)

    Google Scholar 

  13. Huang, Y., Shao, L., Frangi, A.F.: DOTE: dual cOnvolutional filTer lEarning for super-resolution and cross-modality synthesis in MRI. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 89–98. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_11

    Chapter  Google Scholar 

  14. Huang, Y., Shao, L., Frangi, A.F.: Simultaneous super-resolution and cross-modality synthesis of 3D medical images using weakly-supervised joint convolutional sparse coding. In: IEEE CVPR, pp. 6070–6079 (2017)

    Google Scholar 

  15. Huang, Y., Zheng, F., Wang, D., Huang, W., Scott, M.R., Shao, L.: Brain image synthesis with unsupervised multivariate canonical CSCl4Net. In: IEEE CVPR, pp. 5881–5890 (2021)

    Google Scholar 

  16. Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: FSL. Neuroimage 62(2), 782–790 (2012)

    Article  Google Scholar 

  17. Jog, A., Carass, A., Roy, S., Pham, D.L., Prince, J.L.: Random forest regression for magnetic resonance image synthesis. MIA 35, 475–488 (2017)

    Google Scholar 

  18. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  19. Kempen, V., Vliet, V.: The influence of the regularization parameter and the first estimate on the performance of Tikhonov regularized non-linear image restoration algorithms. J. Microsc. 198(1), 63–75 (2000)

    Article  Google Scholar 

  20. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  21. Li, Y., Shen, L.: Skin lesion analysis towards melanoma detection using deep learning network. Sensors 18(2), 556 (2018)

    Article  Google Scholar 

  22. Li, Y., Yuan, L., Chen, Y., Wang, P., Vasconcelos, N.: Dynamic transfer for multi-source domain adaptation. In: IEEE CVPR, pp. 10998–11007 (2021)

    Google Scholar 

  23. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: ICML, pp. 97–105. PMLR (2015)

    Google Scholar 

  24. Mao, Q., Lee, H.Y., Tseng, H.Y., Ma, S., Yang, M.H.: Mode seeking generative adversarial networks for diverse image synthesis. In: IEEE CVPR, pp. 1429–1437 (2019)

    Google Scholar 

  25. Menze, B.H., Jakab, A., Bauer, S., et al.: The multimodal brain tumor image segmentation benchmark (BraTS). IEEE TMI 34(10), 1993–2024 (2015)

    Google Scholar 

  26. Mondal, A.K., Dolz, J., Desrosiers, C.: Few-shot 3D multi-modal medical image segmentation using generative adversarial learning. arXiv preprint arXiv:1810.12241 (2018)

  27. Pan, Y., Liu, M., Lian, C., Zhou, T., Xia, Y., Shen, D.: Synthesizing missing PET from MRI with cycle-consistent generative adversarial networks for Alzheimer’s disease diagnosis. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 455–463. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_52

    Chapter  Google Scholar 

  28. Park, T., Efros, A.A., Zhang, R., Zhu, J.-Y.: Contrastive learning for unpaired image-to-image translation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 319–345. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_19

    Chapter  Google Scholar 

  29. Qiu, Q., Patel, V.M., Turaga, P., Chellappa, R.: Domain adaptive dictionary learning. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 631–645. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_45

    Chapter  Google Scholar 

  30. Rosenthal, M., Weeks, S., Aylward, S., Bullitt, E., Fuchs, H.: Intraoperative tracking of anatomical structures using fluoroscopy and a vascular balloon catheter. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 1253–1254. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45468-3_183

    Chapter  MATH  Google Scholar 

  31. Roy, S., Carass, A., Prince, J.L.: Magnetic resonance image example-based contrast synthesis. IEEE TMI 32(12), 2348–2363 (2013)

    Google Scholar 

  32. Van Loan, C.F., Golub, G.: Matrix computations (Johns Hopkins studies in mathematical sciences) (1996)

    Google Scholar 

  33. Vemulapalli, R., Van Nguyen, H., Zhou, S.K.: Unsupervised cross-modal synthesis of subject-specific scans. In: IEEE ICCV, pp. 630–638 (2015)

    Google Scholar 

  34. Wang, H., Li, Y., He, N., Ma, K., Meng, D., Zheng, Y.: DICDNet: deep interpretable convolutional dictionary network for metal artifact reduction in CT images. IEEE TMI 41(4), 869–880 (2021)

    Google Scholar 

  35. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE TIP 19(11), 2861–2873 (2010)

    MathSciNet  MATH  Google Scholar 

  36. Yang, L., Balaji, Y., Lim, S.-N., Shrivastava, A.: Curriculum manager for source selection in multi-source domain adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 608–624. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_36

    Chapter  Google Scholar 

  37. Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R.: Deconvolutional networks. In: IEEE CVPR, pp. 2528–2535. IEEE (2010)

    Google Scholar 

  38. Zhang, H., Mao, H., Long, Y., Yang, W., Shao, L.: A probabilistic zero-shot learning method via latent nonnegative prototype synthesis of unseen classes. IEEE Trans. Neural Netw. Learn Syst. 31(7), 2361–2375 (2019)

    MathSciNet  Google Scholar 

  39. Zheng, M., et al.: Graph regularized sparse coding for image representation. IEEE TIP 20(5), 1327–1336 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Zhong, E., Fan, W., Yang, Q., Verscheure, O., Ren, J.: Cross validation framework to choose amongst models and datasets for transfer learning. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS (LNAI), vol. 6323, pp. 547–562. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15939-8_35

    Chapter  Google Scholar 

  41. Zhu, J.-Y., Krähenbühl, P., Shechtman, E., Efros, A.A.: Generative visual manipulation on the natural image manifold. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 597–613. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_36

    Chapter  Google Scholar 

  42. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: IEEE ICCV, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Zheng or Yefeng Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, Y., Zheng, F., Sun, X., Li, Y., Shao, L., Zheng, Y. (2022). Generalized Brain Image Synthesis with Transferable Convolutional Sparse Coding Networks. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13694. Springer, Cham. https://doi.org/10.1007/978-3-031-19830-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19830-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19829-8

  • Online ISBN: 978-3-031-19830-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics