Skip to main content

Prior Knowledge Guided Unsupervised Domain Adaptation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13693))

Included in the following conference series:

Abstract

The waive of labels in the target domain makes Unsupervised Domain Adaptation (UDA) an attractive technique in many real-world applications, though it also brings great challenges as model adaptation becomes harder without labeled target data. In this paper, we address this issue by seeking compensation from target domain prior knowledge, which is often (partially) available in practice, e.g., from human expertise. This leads to a novel yet practical setting where in addition to the training data, some prior knowledge about the target class distribution are available. We term the setting as Knowledge-guided Unsupervised Domain Adaptation (KUDA). In particular, we consider two specific types of prior knowledge about the class distribution in the target domain: Unary Bound that describes the lower and upper bounds of individual class probabilities, and Binary Relationship that describes the relations between two class probabilities. We propose a general rectification module that uses such prior knowledge to refine model generated pseudo labels. The module is formulated as a Zero-One Programming problem derived from the prior knowledge and a smooth regularizer. It can be easily plugged into self-training based UDA methods, and we combine it with two state-of-the-art methods, SHOT and DINE. Empirical results on four benchmarks confirm that the rectification module clearly improves the quality of pseudo labels, which in turn benefits the self-training stage. With the guidance from prior knowledge, the performances of both methods are substantially boosted. We expect our work to inspire further investigations in integrating prior knowledge in UDA. Code is available at https://github.com/tsun/KUDA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baslamisli, A.S., Le, H.A., Gevers, T.: CNN based learning using reflection and retinex models for intrinsic image decomposition. In: CVPR, pp. 6674–6683 (2018)

    Google Scholar 

  2. Chen, D., Wang, D., Darrell, T., Ebrahimi, S.: Contrastive test-time adaptation. In: CVPR, pp. 295–305 (2022)

    Google Scholar 

  3. Chen, L., et al.: Reusing the task-specific classifier as a discriminator: discriminator-free adversarial domain adaptation. In: CVPR, pp. 7181–7190 (2022)

    Google Scholar 

  4. Ding, N., Xu, Y., Tang, Y., Xu, C., Wang, Y., Tao, D.: Source-free domain adaptation via distribution estimation. In: CVPR, pp. 7212–7222 (2022)

    Google Scholar 

  5. Fu, B., Cao, Z., Wang, J., Long, M.: Transferable query selection for active domain adaptation. In: CVPR, pp. 7272–7281 (2021)

    Google Scholar 

  6. Gomes, R., Krause, A., Perona, P.: Discriminative clustering by regularized information maximization. In: NeurIPS (2010)

    Google Scholar 

  7. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2022). https://www.gurobi.com

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  9. Huang, J., Guan, D., Xiao, A., Lu, S.: Model adaptation: historical contrastive learning for unsupervised domain adaptation without source data. In: NeurIPS (2021)

    Google Scholar 

  10. Kayhan, O.S., Gemert, J.C.V.: On translation invariance in CNNs: convolutional layers can exploit absolute spatial location. In: CVPR, pp. 14274–14285 (2020)

    Google Scholar 

  11. Kim, T., Kim, C.: Attract, perturb, and explore: learning a feature alignment network for semi-supervised domain adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 591–607. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_35

    Chapter  Google Scholar 

  12. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  13. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)

    Article  Google Scholar 

  14. Lefort, R., Fablet, R., Boucher, J.-M.: Weakly supervised classification of objects in images using soft random forests. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 185–198. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_14

    Chapter  Google Scholar 

  15. Lengyel, A., Garg, S., Milford, M., van Gemert, J.C.: Zero-shot day-night domain adaptation with a physics prior. In: ICCV, pp. 4399–4409 (2021)

    Google Scholar 

  16. Li, B., Wang, Y., Zhang, S., Li, D., Keutzer, K., Darrell, T., Zhao, H.: Learning invariant representations and risks for semi-supervised domain adaptation. In: CVPR, pp. 1104–1113 (2021)

    Google Scholar 

  17. Li, R., Cheong, L.F., Tan, R.T.: Heavy rain image restoration: Integrating physics model and conditional adversarial learning. In: CVPR, pp. 1633–1642 (2019)

    Google Scholar 

  18. Liang, J., Hu, D., Feng, J.: Do we really need to access the source data? source hypothesis transfer for unsupervised domain adaptation. In: ICML, pp. 6028–6039 (2020)

    Google Scholar 

  19. Liang, J., Hu, D., Feng, J., He, R.: Dine: domain adaptation from single and multiple black-box predictors. In: CVPR, pp. 8003–8013 (2022)

    Google Scholar 

  20. Lin, Y., Pintea, S.L., van Gemert, J.C.: Deep Hough-transform line priors. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 323–340. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_20

    Chapter  Google Scholar 

  21. Lipton, Z., Wang, Y.X., Smola, A.: Detecting and correcting for label shift with black box predictors. In: ICML, pp. 3122–3130 (2018)

    Google Scholar 

  22. Liu, X., et al.: Adversarial unsupervised domain adaptation with conditional and label shift: infer, align and iterate. In: ICCV, pp. 10367–10376 (2021)

    Google Scholar 

  23. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  24. Mann, G.S., McCallum, A.: Simple, robust, scalable semi-supervised learning via expectation regularization. In: ICML, pp. 593–600 (2007)

    Google Scholar 

  25. Pan, S.J., Yang, Q.: A survey on transfer learning. TKDE 22(10), 1345–1359 (2009)

    Google Scholar 

  26. Peng, X., Bai, Q., Xia, X., Huang, Z., Saenko, K., Wang, B.: Moment matching for multi-source domain adaptation. In: ICCV, pp. 1406–1415 (2019)

    Google Scholar 

  27. Peng, X., Usman, B., Kaushik, N., Hoffman, J., Wang, D., Saenko, K.: Visda: the visual domain adaptation challenge. arXiv preprint arXiv:1710.06924 (2017)

  28. Prabhu, V., Chandrasekaran, A., Saenko, K., Hoffman, J.: Active domain adaptation via clustering uncertainty-weighted embeddings. In: ICCV, pp. 8505–8514 (2021)

    Google Scholar 

  29. Prabhu, V., Khare, S., Kartik, D., Hoffman, J.: Sentry: Selective entropy optimization via committee consistency for unsupervised domain adaptation. In: CVPR. pp. 8558–8567 (2021)

    Google Scholar 

  30. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NeurIPS (2015)

    Google Scholar 

  31. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_16

    Chapter  Google Scholar 

  32. Saito, K., Kim, D., Sclaroff, S., Darrell, T., Saenko, K.: Semi-supervised domain adaptation via minimax entropy. In: ICCV, pp. 8050–8058 (2019)

    Google Scholar 

  33. Schapire, R.E., Rochery, M., Rahim, M., Gupta, N.: Incorporating prior knowledge into boosting. In: ICML, pp. 538–545 (2002)

    Google Scholar 

  34. Shi, Y., Sha, F.: Information-theoretical learning of discriminative clusters for unsupervised domain adaptation. In: ICML (2012)

    Google Scholar 

  35. Sun, T., Lu, C., Zhang, T., Ling, H.: Safe self-refinement for transformer-based domain adaptation. In: CVPR, pp. 7191–7200 (2022)

    Google Scholar 

  36. Tan, S., Peng, X., Saenko, K.: Class-imbalanced domain adaptation: an empirical odyssey. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12535, pp. 585–602. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66415-2_38

    Chapter  Google Scholar 

  37. Urban, G., et al.: Do deep convolutional nets really need to be deep and convolutional? In: ICLR (2017)

    Google Scholar 

  38. Wang, M., Deng, W.: Deep visual domain adaptation: a survey. Neurocomputing 312, 135–153 (2018)

    Article  Google Scholar 

  39. Wang, Z., Lyu, S., Schalk, G., Ji, Q.: Learning with target prior. In: NeurIPS (2012)

    Google Scholar 

  40. Wilson, G., Cook, D.J.: A survey of unsupervised deep domain adaptation. ACM TIST 11(5), 1–46 (2020)

    Article  Google Scholar 

  41. Wolsey, L.A.: Integer Programming. Wiley, New York (2020)

    Book  MATH  Google Scholar 

  42. Xie, B., Yuan, L., Li, S., Liu, C.H., Cheng, X., Wang, G.: Active learning for domain adaptation: an energy-based approach. In: AAAI, pp. 8708–8716 (2022)

    Google Scholar 

  43. Zhang, H., Zhang, Y., Jia, K., Zhang, L.: Unsupervised domain adaptation of black-box source models. arXiv preprint arXiv:2101.02839 (2021)

  44. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. In: ICLR (2018)

    Google Scholar 

  45. Zhang, Y., Liu, T., Long, M., Jordan, M.: Bridging theory and algorithm for domain adaptation. In: ICML, pp. 7404–7413 (2019)

    Google Scholar 

  46. Zhu, X., Ghahramani, Z., Lafferty, J.D.: Semi-supervised learning using gaussian fields and harmonic functions. In: ICML, pp. 912–919 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Sun .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 278 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, T., Lu, C., Ling, H. (2022). Prior Knowledge Guided Unsupervised Domain Adaptation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13693. Springer, Cham. https://doi.org/10.1007/978-3-031-19827-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19827-4_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19826-7

  • Online ISBN: 978-3-031-19827-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics