Skip to main content

BungeeNeRF: Progressive Neural Radiance Field for Extreme Multi-scale Scene Rendering

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13692))

Included in the following conference series:

Abstract

Neural radiance fields (NeRF) has achieved outstanding performance in modeling 3D objects and controlled scenes, usually under a single scale. In this work, we focus on multi-scale cases where large changes in imagery are observed at drastically different scales. This scenario vastly exists in real-world 3D environments, such as city scenes, with views ranging from satellite level that captures the overview of a city, to ground level imagery showing complex details of an architecture; and can also be commonly identified in landscape and delicate minecraft 3D models. The wide span of viewing positions within these scenes yields multi-scale renderings with very different levels of detail, which poses great challenges to neural radiance field and biases it towards compromised results. To address these issues, we introduce BungeeNeRF, a progressive neural radiance field that achieves level-of-detail rendering across drastically varied scales. Starting from fitting distant views with a shallow base block, as training progresses, new blocks are appended to accommodate the emerging details in the increasingly closer views. The strategy progressively activates high-frequency channels in NeRF’s positional encoding inputs and successively unfolds more complex details as the training proceeds. We demonstrate the superiority of BungeeNeRF in modeling diverse multi-scale scenes with drastically varying views on multiple data sources (city models, synthetic, and drone captured data) and its support for high-quality rendering in different levels of detail.

Y. Xiangli and L. Xu—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The visualizations are acquired by inferring point weights from a trained Mip-NeRF, and accumulate only the selected frequency channel values, following a similar approach of Eq.  3.1 by replacing \(\textbf{c}_{k}\) with the selected channel value for each point.

  2. 2.

    In general cases where the distance/depth information are not accessible, \(I_l\) can be approximated by the spatial size of textures in the image. The choice of \(L_{max}\) is relatively flexible since it is natural to interpolate results obtained from successive blocks and achieve smooth LOD transition.

  3. 3.

    Per-pixel assigned scale is also possible and is likely to gain improvements if depth value is available. For our experiments, image-wise assignment already suffices.

References

  1. Google earth studio. https://earth.google.com/studio/

  2. Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srinivasan, P.P.: Mip-NeRF: a multiscale representation for anti-aliasing neural radiance fields. arXiv preprint arXiv:2103.13415 (2021)

  3. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-NeRF 360: unbounded anti-aliased neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5470–5479 (2022)

    Google Scholar 

  4. Clark, J.H.: Hierarchical geometric models for visible surface algorithms. Commun. ACM 19(10), 547–554 (1976)

    Article  MATH  Google Scholar 

  5. Dai, X., Chen, D., Liu, M., Chen, Y., Yuan, L.: DA-NAS: data adapted pruning for efficient neural architecture search. ArXiv abs/2003.12563 (2020)

    Google Scholar 

  6. Fathony, R., Sahu, A.K., Willmott, D., Kolter, J.Z.: Multiplicative filter networks. In: International Conference on Learning Representations (2020)

    Google Scholar 

  7. Guo, S., Huang, W., Zhang, H., Zhuang, C., Dong, D., Scott, M.R., Huang, D.: CurriculumNet: weakly supervised learning from large-scale web images. ArXiv abs/1808.01097 (2018)

    Google Scholar 

  8. Guo, Y., et al.: Breaking the curse of space explosion: towards efficient NAS with curriculum search. ArXiv abs/2007.07197 (2020)

    Google Scholar 

  9. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)

  10. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of styleGAN. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8107–8116 (2020)

    Google Scholar 

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  12. Li, Z., Niklaus, S., Snavely, N., Wang, O.: Neural scene flow fields for space-time view synthesis of dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6498–6508 (2021)

    Google Scholar 

  13. Lin, C.H., Ma, W.C., Torralba, A., Lucey, S.: BARF: bundle-adjusting neural radiance fields. arXiv preprint arXiv:2104.06405 (2021)

  14. Lindell, D.B., Van Veen, D., Park, J.J., Wetzstein, G.: BACON: band-limited coordinate networks for multiscale scene representation. arXiv preprint arXiv:2112.04645 (2021)

  15. Liu, L., Gu, J., Lin, K.Z., Chua, T.S., Theobalt, C.: Neural sparse voxel fields. ArXiv abs/2007.11571 (2020)

    Google Scholar 

  16. Lombardi, S., Simon, T., Saragih, J.M., Schwartz, G., Lehrmann, A.M., Sheikh, Y.: Neural volumes. ACM Trans. Graph. 38, 1–14 (2019)

    Google Scholar 

  17. Luebke, D., Reddy, M., Cohen, J.D., Varshney, A., Watson, B., Huebner, R.: Level of Detail for 3D Graphics. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  18. Martel, J.N., Lindell, D.B., Lin, C.Z., Chan, E.R., Monteiro, M., Wetzstein, G.: ACORN: adaptive coordinate networks for neural scene representation. arXiv preprint arXiv:2105.02788 (2021)

  19. Martin-Brualla, R., Radwan, N., Sajjadi, M.S., Barron, J.T., Dosovitskiy, A., Duckworth, D.: Nerf in the wild: Neural radiance fields for unconstrained photo collections. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7210–7219 (2021)

    Google Scholar 

  20. Max, N.: Optical models for direct volume rendering. IEEE Trans. Visual. Ccoput. Graph. 1, 99–108 (1995)

    Google Scholar 

  21. Mescheder, L.M., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3d reconstruction in function space. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4455–4465 (2019)

    Google Scholar 

  22. Mildenhall, Ben, Srinivasan, Pratul P.., Tancik, Matthew, Barron, Jonathan T.., Ramamoorthi, Ravi, Ng, Ren: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, Andrea, Bischof, Horst, Brox, Thomas, Frahm, Jan-Michael. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24

    Chapter  Google Scholar 

  23. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. arXiv preprint arXiv:2201.05989 (2022)

  24. Park, J.J., Florence, P.R., Straub, J., Newcombe, R.A., Lovegrove, S.: Deepsdf: Learning continuous signed distance functions for shape representation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 165–174 (2019)

    Google Scholar 

  25. Park, K., et al.: NerFies: deformable neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5865–5874 (2021)

    Google Scholar 

  26. Park, K., et al.: HyperNerf: a higher-dimensional representation for topologically varying neural radiance fields. arXiv preprint arXiv:2106.13228 (2021)

  27. Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-NeRF: neural radiance fields for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10318–10327 (2021)

    Google Scholar 

  28. Rematas, K., et al.: Urban radiance fields. arXiv preprint arXiv:2111.14643 (2021)

  29. Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4104–4113 (2016)

    Google Scholar 

  30. Simoncelli, E.P., Freeman, W.T.: The steerable pyramid: a flexible architecture for multi-scale derivative computation. In: Proceedings of the International Conference on Image Processing, vol. 3, pp. 444–447 (1995)

    Google Scholar 

  31. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2015)

    Google Scholar 

  32. Sitzmann, V., Zollhoefer, M., Wetzstein, G.: Scene representation networks: continuous 3D-structure-aware neural scene representations. ArXiv abs/1906.01618 (2019)

    Google Scholar 

  33. Soviany, P., Ionescu, R.T., Rota, P., Sebe, N.: Curriculum learning: a survey. arXiv preprint arXiv:2101.10382 (2021)

  34. Takikawa, T., et al.: Neural geometric level of detail: real-time rendering with implicit 3d shapes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11358–11367 (2021)

    Google Scholar 

  35. Tancik, M., et al.: Block-NeRF: scalable large scene neural view synthesis. arXiv preprint arXiv:2202.05263 (2022)

  36. Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. arXiv preprint arXiv:2006.10739 (2020)

  37. Tewari, A., et al.: Advances in neural rendering. arXiv preprint arXiv:2111.05849 (2021)

  38. Tretschk, E., Tewari, A., Golyanik, V., Zollhofer, M., Lassner, C., Theobalt, C.: Non-rigid neural radiance fields: Reconstruction and novel view synthesis of a dynamic scene from monocular video. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12959–12970 (2021)

    Google Scholar 

  39. Turki, H., Ramanan, D., Satyanarayanan, M.: Mega-NeRF: scalable construction of large-scale nerfs for virtual fly-throughs. arXiv preprint arXiv:2112.10703 (2021)

  40. Williams, L.: Pyramidal parametrics. In: Proceedings of the 10th Annual Conference on Computer Graphics and Interactive Techniques, pp. 1–11 (1983)

    Google Scholar 

  41. Xian, W., Huang, J.B., Kopf, J., Kim, C.: Space-time neural irradiance fields for free-viewpoint video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9421–9431 (2021)

    Google Scholar 

  42. Zhang, K., Riegler, G., Snavely, N., Koltun, V.: Nerf++: analyzing and improving neural radiance fields. arXiv preprint arXiv:2010.07492 (2020)

  43. Zhang, K., Riegler, G., Snavely, N., Koltun, V.: Nerf++: analyzing and improving neural radiance fields. arXiv preprint arXiv:2010.07492 (2020)

  44. Zhou, T., Wang, S., Bilmes, J.A.: Robust curriculum learning: from clean label detection to noisy label self-correction. In: ICLR (2021)

    Google Scholar 

Download references

Acknowledgment

This work is supported by GRF 14205719, TRS T41-603/20-R, Centre for Perceptual and Interactive Intelligence, and CUHK Interdisciplinary AI Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Dai .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 195 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiangli, Y. et al. (2022). BungeeNeRF: Progressive Neural Radiance Field for Extreme Multi-scale Scene Rendering. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13692. Springer, Cham. https://doi.org/10.1007/978-3-031-19824-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19824-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19823-6

  • Online ISBN: 978-3-031-19824-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics