Skip to main content

DiffuStereo: High Quality Human Reconstruction via Diffusion-Based Stereo Using Sparse Cameras

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

We propose DiffuStereo, a novel system using only sparse cameras (8 in this work) for high-quality 3D human reconstruction. At its core is a novel diffusion-based stereo module, which introduces diffusion models, a type of powerful generative models, into the iterative stereo matching network. To this end, we design a new diffusion kernel and additional stereo constraints to facilitate stereo matching and depth estimation in the network. We further present a multi-level stereo network architecture to handle high-resolution (up to 4k) inputs without requiring unaffordable memory footprint. Given a set of sparse-view color images of a human, the proposed multi-level diffusion-based stereo network can produce highly accurate depth maps, which are then converted into a high-quality 3D human model through an efficient multi-view fusion strategy. Overall, our method enables automatic reconstruction of human models with quality on par to high-end dense-view camera rigs, and this is achieved using a much more light-weight hardware setup. Experiments show that our method outperforms state-of-the-art methods by a large margin both qualitatively and quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 4DViews. http://www.4dviews.com/

  2. 8i. https://8i.com/

  3. Alldieck, T., Magnor, M., Xu, W., Theobalt, C., Pons-Moll, G.: Detailed human avatars from monocular video. In: 3DV, September 2018

    Google Scholar 

  4. Alldieck, T., Magnor, M., Xu, W., Theobalt, C., Pons-Moll, G.: Video based reconstruction of 3D people models. In: CVPR, June 2018

    Google Scholar 

  5. Alldieck, T., Pons-Moll, G., Theobalt, C., Magnor, M.: Tex2Shape: detailed full human body geometry from a single image. In: ICCV, pp. 2293–2303 (2019)

    Google Scholar 

  6. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: a randomized correspondence algorithm for structural image editing. ACM TOG 28, 24 (2009)

    Article  Google Scholar 

  7. Bogo, F., Black, M.J., Loper, M., Romero, J.: Detailed full-body reconstructions of moving people from monocular RGB-D sequences. In: ICCV, pp. 2300–2308 (2015)

    Google Scholar 

  8. Bradley, D., Popa, T., Sheffer, A., Heidrich, W., Boubekeur, T.: Markerless garment capture. ACM TOG 27(3), 1–9 (2008)

    Article  Google Scholar 

  9. Chang, J.R., Chen, Y.S.: Pyramid stereo matching network. In: CVPR, pp. 5410–5418 (2018)

    Google Scholar 

  10. Chen, N., Zhang, Y., Zen, H., Weiss, R.J., Norouzi, M., Chan, W.: WaveGrad: estimating gradients for waveform generation. In: ICLR (2021)

    Google Scholar 

  11. Collet, A., et al.: High-quality streamable free-viewpoint video. ACM TOG 34(4), 69 (2015)

    Article  Google Scholar 

  12. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. In: NeurIPS, vol. 34 (2021)

    Google Scholar 

  13. Dou, M., et al.: Motion2Fusion: real-time volumetric performance capture. ACM TOG 36(6), 246:1–246:16 (2017)

    Google Scholar 

  14. Dou, M., et al.: Fusion4D: real-time performance capture of challenging scenes. ACM TOG 35(4), 1–13 (2016)

    Article  Google Scholar 

  15. Fanello, S.R., et al.: UltraStereo: efficient learning-based matching for active stereo systems. In: CVPR, pp. 6535–6544 (2017)

    Google Scholar 

  16. Gabeur, V., Franco, J.S., Martin, X., Schmid, C., Rogez, G.: Moulding humans: non-parametric 3D human shape estimation from single images. In: ICCV, pp. 2232–2241 (2019)

    Google Scholar 

  17. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: CVPR (2012)

    Google Scholar 

  18. Gilbert, A., Volino, M., Collomosse, J., Hilton, A.: Volumetric performance capture from minimal camera viewpoints. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 591–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_35

    Chapter  Google Scholar 

  19. Guo, K., et al.: The relightables: volumetric performance capture of humans with realistic relighting. ACM TOG 38(6), 1–19 (2019)

    Google Scholar 

  20. Guo, X., Yang, K., Yang, W., Wang, X., Li, H.: Group-wise correlation stereo network. In: CVPR, pp. 3273–3282 (2019)

    Google Scholar 

  21. Hannah, M.J.: Computer Matching of Areas in Stereo Images. Stanford University (1974)

    Google Scholar 

  22. He, T., Xu, Y., Saito, S., Soatto, S., Tung, T.: Arch++: animation-ready clothed human reconstruction revisited. In: ICCV, pp. 11046–11056 (2021)

    Google Scholar 

  23. Hirschmuller, H.: Stereo processing by semiglobal matching and mutual information. IEEE TPAMI 30(2), 328–341 (2008)

    Article  Google Scholar 

  24. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: NeurIPS, vol. 33, pp. 6840–6851 (2020)

    Google Scholar 

  25. Ho, J., Saharia, C., Chan, W., Fleet, D.J., Norouzi, M., Salimans, T.: Cascaded diffusion models for high fidelity image generation. arXiv preprint arXiv:2106.15282 (2021)

  26. Hong, Y., Zhang, J., Jiang, B., Guo, Y., Liu, L., Bao, H.: StereoPIFu: depth aware clothed human digitization via stereo vision. In: CVPR (2021)

    Google Scholar 

  27. Huang, Z., et al.: Deep volumetric video from very sparse multi-view performance capture. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 351–369. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_21

    Chapter  Google Scholar 

  28. Huang, Z., Xu, Y., Lassner, C., Li, H., Tung, T.: Arch: animatable reconstruction of clothed humans. In: CVPR (2020)

    Google Scholar 

  29. Jensen, R., Dahl, A., Vogiatzis, G., Tola, E., Aanæs, H.: Large scale multi-view stereopsis evaluation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 406–413. IEEE (2014)

    Google Scholar 

  30. Joo, H., et al.: Panoptic studio: a massively multiview system for social motion capture. In: ICCV (2015)

    Google Scholar 

  31. Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: ESGP, vol. 7 (2006)

    Google Scholar 

  32. Kendall, A., et al.: End-to-end learning of geometry and context for deep stereo regression. In: ICCV, pp. 66–75 (2017)

    Google Scholar 

  33. Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimization. IEEE TPAMI 28(10), 1568–1583 (2006)

    Article  Google Scholar 

  34. Li, H., et al.: SRDiff: single image super-resolution with diffusion probabilistic models. Neurocomputing 479, 47–59 (2022)

    Article  Google Scholar 

  35. Li, J., et al.: Practical stereo matching via cascaded recurrent network with adaptive correlation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16263–16272 (2022)

    Google Scholar 

  36. Li, Z., Yu, T., Zheng, Z., Guo, K., Liu, Y.: POSEFusion: pose-guided selective fusion for single-view human volumetric capture. In: CVPR (2021)

    Google Scholar 

  37. Lipson, L., Teed, Z., Deng, J.: Raft-stereo: multilevel recurrent field transforms for stereo matching. In: 3DV, pp. 218–227 (2021)

    Google Scholar 

  38. Liu, Y., Cao, X., Dai, Q., Xu, W.: Continuous depth estimation for multi-view stereo. In: CVPR, pp. 2121–2128 (2009)

    Google Scholar 

  39. Liu, Y., Dai, Q., Xu, W.: A point-cloud-based multiview stereo algorithm for free-viewpoint video. IEEE TVCG 16(3), 407–418 (2009)

    Google Scholar 

  40. Mayer, N., et al.: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: CVPR, pp. 4040–4048 (2016)

    Google Scholar 

  41. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: CVPR (2015)

    Google Scholar 

  42. Natsume, R., et al.: SiCloPe: silhouette-based clothed people. In: CVPR. pp. 4480–4490 (2019)

    Google Scholar 

  43. Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. In: ICML, pp. 8162–8171 (2021)

    Google Scholar 

  44. Pons-Moll, G., Pujades, S., Hu, S., Black, M.J.: ClothCap: seamless 4D clothing capture and retargeting. ACM TOG 36(4), 1–15 (2017)

    Article  Google Scholar 

  45. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. arXiv preprint arXiv:2112.10752 (2021)

  46. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  47. Saharia, C., et al.: Palette: image-to-image diffusion models. In: NeurIPS Workshop (2021)

    Google Scholar 

  48. Saharia, C., Ho, J., Chan, W., Salimans, T., Fleet, D.J., Norouzi, M.: Image super-resolution via iterative refinement. arXiv:2104.07636 (2021)

  49. Saito, S., Huang, Z., Natsume, R., Morishima, S., Kanazawa, A., Li, H.: PIFu: pixel-aligned implicit function for high-resolution clothed human digitization. In: ICCV, pp. 2304–2314 (2019)

    Google Scholar 

  50. Saito, S., Simon, T., Saragih, J., Joo, H.: PIFuHD: multi-level pixel-aligned implicit function for high-resolution 3D human digitization. In: CVPR, pp. 84–93 (2020)

    Google Scholar 

  51. Shao, R., et al.: DoubleField: bridging the neural surface and radiance fields for high-fidelity human reconstruction and rendering. In: CVPR (2022)

    Google Scholar 

  52. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: ICML, pp. 2256–2265 (2015)

    Google Scholar 

  53. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. In: International Conference on Learning Representations, ICLR (2021)

    Google Scholar 

  54. Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S., Poole, B.: Score-based generative modeling through stochastic differential equations. In: International Conference on Learning Representations, ICLR (2021)

    Google Scholar 

  55. Starck, J., Hilton, A.: Surface capture for performance-based animation. IEEE Comput. Graphics Appl. 27(3), 21–31 (2007)

    Article  Google Scholar 

  56. Twindom (2020). https://web.twindom.com

  57. Vlasic, D., et al.: Dynamic shape capture using multi-view photometric stereo. ACM TOG 28(5), 174:1–174:11 (2009)

    Google Scholar 

  58. Wang, F., Galliani, S., Vogel, C., Pollefeys, M.: IterMVS: iterative probability estimation for efficient multi-view stereo. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8606–8615 (2022)

    Google Scholar 

  59. Wang, L., Zhao, X., Yu, T., Wang, S., Liu, Y.: NormalGAN: learning detailed 3D human from a single RGB-D image. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 430–446. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_26

    Chapter  Google Scholar 

  60. Wang, S., Li, B., Dai, Y.: Efficient multi-view stereo by iterative dynamic cost volume. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8655–8664 (2022)

    Google Scholar 

  61. Wu, C., Varanasi, K., Liu, Y., Seidel, H., Theobalt, C.: Shading-based dynamic shape refinement from multi-view video under general illumination. In: ICCV, pp. 1108–1115 (2011)

    Google Scholar 

  62. Yao, Y., Luo, Z., Li, S., Fang, T., Quan, L.: MVSNet: depth inference for unstructured multi-view stereo. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 785–801. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_47

    Chapter  Google Scholar 

  63. Yu, T., et al.: BodyFusion: real-time capture of human motion and surface geometry using a single depth camera. In: ICCV, pp. 910–919. IEEE (2017)

    Google Scholar 

  64. Yu, T., Zheng, Z., Guo, K., Liu, P., Dai, Q., Liu, Y.: Function4D: real-time human volumetric capture from very sparse consumer RGBD sensors. In: CVPR, pp. 5746–5756 (2021)

    Google Scholar 

  65. Yu, T., et al.: DoubleFusion: real-time capture of human performances with inner body shapes from a single depth sensor. In: CVPR, pp. 7287–7296. IEEE (2018)

    Google Scholar 

  66. Zabih, R., Woodfill, J.: Non-parametric local transforms for computing visual correspondence. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 801, pp. 151–158. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0028345

    Chapter  Google Scholar 

  67. Zhang, F., Prisacariu, V., Yang, R., Torr, P.H.: GA-Net: guided aggregation net for end-to-end stereo matching. In: CVPR, pp. 185–194 (2019)

    Google Scholar 

  68. Zhang, F., Qi, X., Yang, R., Prisacariu, V., Wah, B., Torr, P.: Domain-invariant stereo matching networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 420–439. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_25

    Chapter  Google Scholar 

  69. Zhang, Y., et al.: Adaptive unimodal cost volume filtering for deep stereo matching. In: AAAI, vol. 34, pp. 12926–12934 (2020)

    Google Scholar 

  70. Zheng, Y., et al.: DeepMultiCap: performance capture of multiple characters using sparse multiview cameras. In: ICCV (2021)

    Google Scholar 

  71. Zheng, Z.: HybridFusion: real-time performance capture using a single depth sensor and sparse IMUs. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 389–406. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_24

    Chapter  Google Scholar 

  72. Zheng, Z., Yu, T., Liu, Y., Dai, Q.: PaMIR: parametric model-conditioned implicit representation for image-based human reconstruction. IEEE TPAMI 44(6), 3170–3184 (2021)

    Article  Google Scholar 

  73. Zhu, H., Zuo, X., Wang, S., Cao, X., Yang, R.: Detailed human shape estimation from a single image by hierarchical mesh deformation. In: CVPR, pp. 4491–4500 (2019)

    Google Scholar 

  74. Žbontar, J., LeCun, Y.: Computing the stereo matching cost with a convolutional neural network. In: CVPR, pp. 1592–1599 (2015)

    Google Scholar 

Download references

Acknowledgements

This paper is supported by National Key R &D Program of China (2021ZD0113501) and the NSFC project No. 62125107 and No. 61827805.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yebin Liu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4780 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shao, R., Zheng, Z., Zhang, H., Sun, J., Liu, Y. (2022). DiffuStereo: High Quality Human Reconstruction via Diffusion-Based Stereo Using Sparse Cameras. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13692. Springer, Cham. https://doi.org/10.1007/978-3-031-19824-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19824-3_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19823-6

  • Online ISBN: 978-3-031-19824-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics