Skip to main content

Dual Adaptive Transformations for Weakly Supervised Point Cloud Segmentation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13691))

Included in the following conference series:

Abstract

Weakly supervised point cloud segmentation, i.e. semantically segmenting a point cloud with only a few labeled points in the whole 3D scene, is highly desirable due to the heavy burden of collecting abundant dense annotations for the model training. However, existing methods remain challenging to accurately segment 3D point clouds since limited annotated data may lead to insufficient guidance for label propagation to unlabeled data. Considering the smoothness-based methods have achieved promising progress, in this paper, we advocate applying the consistency constraint under various perturbations to effectively regularize unlabeled 3D points. Specifically, we propose a novel DAT (Dual Adaptive Transformations) model for weakly supervised point cloud segmentation, where the dual adaptive transformations are performed via an adversarial strategy at both point-level and region-level, aiming at enforcing the local and structural smoothness constraints on 3D point clouds. We evaluate our proposed DAT model with two popular backbones on the large-scale S3DIS and ScanNet-V2 datasets. Extensive experiments demonstrate that our model can effectively leverage the unlabeled 3D points and achieve significant performance gains on both datasets, setting new state-of-the-art performance for weakly supervised point cloud segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Armeni, I., et al.: 3D semantic parsing of large-scale indoor spaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1534–1543 (2016)

    Google Scholar 

  2. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.A.: MixMatch: a holistic approach to semi-supervised learning. In: Advances in Neural Information Processing Systems 32 (2019)

    Google Scholar 

  3. Bortsova, G., Dubost, F., Hogeweg, L., Katramados, I., de Bruijne, M.: Semi-supervised medical image segmentation via learning consistency under transformations. In: Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.-T., Khan, A. (eds.) MICCAI 2019. LNCS, vol. 11769, pp. 810–818. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32226-7_90

    Chapter  Google Scholar 

  4. Chen, Y., et al.: PointMixup: augmentation for point clouds. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 330–345. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_20

    Chapter  Google Scholar 

  5. Choy, C., Gwak, J., Savarese, S.: 4D spatio-temporal convnets: Minkowski convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3075–3084 (2019)

    Google Scholar 

  6. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: ScanNet: richly-annotated 3d reconstructions of indoor scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5828–5839 (2017)

    Google Scholar 

  7. Deng, S., Dong, Q., Liu, B., Hu, Z.: Superpoint-guided semi-supervised semantic segmentation of 3D point clouds. arXiv preprint arXiv:2107.03601 (2021)

  8. French, G., Laine, S., Aila, T., Mackiewicz, M., Finlayson, G.: Semi-supervised semantic segmentation needs strong, varied perturbations. arXiv preprint arXiv:1906.01916 (2019)

  9. Gao, B., Pan, Y., Li, C., Geng, S., Zhao, H.: Are we hungry for 3D LiDAR data for semantic segmentation? arXiv preprint arXiv:2006.04307 3, 20 (2020)

  10. Hamdi, A., Rojas, S., Thabet, A., Ghanem, B.: AdvPC: transferable adversarial perturbations on 3D point clouds. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 241–257. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_15

    Chapter  Google Scholar 

  11. Hou, J., Graham, B., Nießner, M., Xie, S.: Exploring data-efficient 3D scene understanding with contrastive scene contexts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15587–15597 (2021)

    Google Scholar 

  12. Hu, Q., et al.: SQN: weakly-supervised semantic segmentation of large-scale 3D point clouds with 1000x fewer labels. arXiv preprint arXiv:2104.04891 (2021)

  13. Jaritz, M., Gu, J., Su, H.: Multi-view PointNet for 3D scene understanding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  14. Ke, Z., Wang, D., Yan, Q., Ren, J., Lau, R.W.: Dual student: breaking the limits of the teacher in semi-supervised learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6728–6736 (2019)

    Google Scholar 

  15. Kundu, A., et al.: Virtual multi-view fusion for 3D semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12369, pp. 518–535. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58586-0_31

    Chapter  Google Scholar 

  16. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. arXiv preprint arXiv:1610.02242 (2016)

  17. Landrieu, L., Simonovsky, M.: Large-scale point cloud semantic segmentation with superpoint graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4558–4567 (2018)

    Google Scholar 

  18. Li, G., Muller, M., Thabet, A., Ghanem, B.: DeepGCNs: can GCNs go as deep as CNNs? In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9267–9276 (2019)

    Google Scholar 

  19. Li, R., Li, X., Heng, P.A., Fu, C.W.: PointAugment: an auto-augmentation framework for point cloud classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6378–6387 (2020)

    Google Scholar 

  20. Li, X.: SnapshotNet: self-supervised feature learning for point cloud data segmentation using minimal labeled data. Ph.D. thesis, City University of New York (2021)

    Google Scholar 

  21. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: convolution on X-transformed points. In: Advances in Neural Information Processing Systems 31, pp. 820–830 (2018)

    Google Scholar 

  22. Lin, D., Dai, J., Jia, J., He, K., Sun, J.: ScribbleSup: scribble-supervised convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3159–3167 (2016)

    Google Scholar 

  23. Liu, W., Wu, Z., Ding, H., Liu, F., Lin, J., Lin, G.: Few-shot segmentation with global and local contrastive learning. arXiv preprint arXiv:2108.05293 (2021)

  24. Liu, Z., Qi, X., Fu, C.W.: One thing one click: a self-training approach for weakly supervised 3d semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1726–1736 (2021)

    Google Scholar 

  25. Luo, L., Tian, B., Zhao, H., Zhou, G.: Pointly-supervised 3D scene parsing with viewpoint bottleneck. arXiv preprint arXiv:2109.08553 (2021)

  26. Mao, J., Wang, X., Li, H.: Interpolated convolutional networks for 3D point cloud understanding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1578–1587 (2019)

    Google Scholar 

  27. Meng, Q., Wang, W., Zhou, T., Shen, J., Jia, Y., Van Gool, L.: Towards a weakly supervised framework for 3D point cloud object detection and annotation. IEEE Trans. Pattern Anal. Mach. Intell. 44, 4454–4468 (2021)

    Google Scholar 

  28. Mittal, S., Tatarchenko, M., Brox, T.: Semi-supervised semantic segmentation with high- and low-level consistency. IEEE Trans. Pattern Anal. Mach. Intell. 43(4), 1369–1379 (2021). https://doi.org/10.1109/TPAMI.2019.2960224

    Article  Google Scholar 

  29. Miyato, T., Maeda, S., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1979–1993 (2018)

    Article  Google Scholar 

  30. Nekrasov, A., Schult, J., Litany, O., Leibe, B., Engelmann, F.: Mix3D: out-of-context data augmentation for 3D scenes. In: 2021 International Conference on 3D Vision (3DV), pp. 116–125. IEEE (2021)

    Google Scholar 

  31. Oh, S.J., Benenson, R., Khoreva, A., Akata, Z., Fritz, M., Schiele, B.: Exploiting saliency for object segmentation from image level labels. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5038–5047. IEEE (2017)

    Google Scholar 

  32. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  33. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. arXiv preprint arXiv:1706.02413 (2017)

  34. Sohn, K., et al.: FixMatch: simplifying semi-supervised learning with consistency and confidence. arXiv preprint arXiv:2001.07685 (2020)

  35. Su, Y.C., Grauman, K.: Learning spherical convolution for fast features from 360 imagery. In: Advances in Neural Information Processing Systems 30, pp. 529–539 (2017)

    Google Scholar 

  36. Tao, A., Duan, Y., Wei, Y., Lu, J., Zhou, J.: SegGroup: seg-level supervision for 3D instance and semantic segmentation. arXiv preprint arXiv:2012.10217 (2020)

  37. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. arXiv preprint arXiv:1703.01780 (2017)

  38. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: KPConv: flexible and deformable convolution for point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6411–6420 (2019)

    Google Scholar 

  39. Wang, H., Rong, X., Yang, L., Feng, J., Xiao, J., Tian, Y.: Weakly supervised semantic segmentation in 3D graph-structured point clouds of wild scenes. arXiv preprint arXiv:2004.12498 (2020)

  40. Wang, P., Yao, W.: A new weakly supervised approach for ALS point cloud semantic segmentation. arXiv preprint arXiv:2110.01462 (2021)

  41. Wang, X., You, S., Li, X., Ma, H.: Weakly-supervised semantic segmentation by iteratively mining common object features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1354–1362 (2018)

    Google Scholar 

  42. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. (TOG) 38(5), 1–12 (2019)

    Article  Google Scholar 

  43. Wang, Y., Huang, G., Song, S., Pan, X., Xia, Y., Wu, C.: Regularizing deep networks with semantic data augmentation. IEEE Trans. Pattern Anal. Mach. Intell. 44, 3733–3748 (2021)

    Google Scholar 

  44. Wei, J., Lin, G., Yap, K.H., Hung, T.Y., Xie, L.: Multi-path region mining for weakly supervised 3D semantic segmentation on point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4384–4393 (2020)

    Google Scholar 

  45. Wu, Y., et al.: Mutual consistency learning for semi-supervised medical image segmentation. Med. Image Anal. 81, 102530 (2022)

    Google Scholar 

  46. Wu, Y., Wu, Z., Wu, Q., Ge, Z., Cai, J.: Exploring smoothness and class-separation for semi-supervised medical image segmentation. arXiv preprint arXiv:2203.01324 (2022)

  47. Wu, Y., Xu, M., Ge, Z., Cai, J., Zhang, L.: Semi-supervised left atrium segmentation with mutual consistency training. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12902, pp. 297–306. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87196-3_28

    Chapter  Google Scholar 

  48. Wu, Z., Lin, G., Cai, J.: Keypoint based weakly supervised human parsing. Image Vis. Comput. 91, 103801 (2019)

    Google Scholar 

  49. Wu, Z., Shi, X., Lin, G., Cai, J.: Learning meta-class memory for few-shot semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 517–526 (2021)

    Google Scholar 

  50. Wu, Z., Tao, Q., Lin, G., Cai, J.: Exploring bottom-up and top-down cues with attentive learning for webly supervised object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12936–12945 (2020)

    Google Scholar 

  51. Xiang, C., Qi, C.R., Li, B.: Generating 3D adversarial point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9136–9144 (2019)

    Google Scholar 

  52. Xie, S., Gu, J., Guo, D., Qi, C.R., Guibas, L., Litany, O.: PointContrast: unsupervised pre-training for 3D point cloud understanding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 574–591. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_34

    Chapter  Google Scholar 

  53. Xu, X., Lee, G.H.: Weakly supervised semantic point cloud segmentation: towards 10x fewer labels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13706–13715 (2020)

    Google Scholar 

  54. Xu, Y., Fan, T., Xu, M., Zeng, L., Qiao, Yu.: SpiderCNN: deep learning on point sets with parameterized convolutional filters. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 90–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_6

    Chapter  Google Scholar 

  55. Zhang, T., Lin, G., Liu, W., Cai, J., Kot, A.: Splitting vs. merging: mining object regions with discrepancy and intersection loss for weakly supervised semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 663–679. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_40

    Chapter  Google Scholar 

  56. Zhang, Y., Qu, Y., Xie, Y., Li, Z., Zheng, S., Li, C.: Perturbed self-distillation: weakly supervised large-scale point cloud semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15520–15528 (2021)

    Google Scholar 

  57. Zhang, Y., Xiang, T., Hospedales, T.M., Lu, H.: Deep mutual learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4320–4328 (2018)

    Google Scholar 

  58. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2921–2929 (2016)

    Google Scholar 

  59. Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4490–4499 (2018)

    Google Scholar 

  60. Zhu, X., et al.: Weakly supervised 3D semantic segmentation using cross-image consensus and inter-voxel affinity relations. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2834–2844 (2021)

    Google Scholar 

Download references

Acknowledgments

This study is supported under the RIE2020 Industry Alignment Fund - Industry Collaboration Projects (IAF-ICP) Funding Initiative, as well as cash and in-kind contribution from the industry partner(s). This research is partly supported by the National Research Foundation, Singapore under its AI Singapore Programme (AISG Award No: AISG-RP-2018-003), the Ministry of Education, Singapore, under its Academic Research Fund Tier 2 (MOE-T2EP20220-0007) and Tier 1 (RG95/20). This research is also partially supported by Monash FIT Start-up Grant and SenseTime Gift Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guosheng Lin .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1116 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Z., Wu, Y., Lin, G., Cai, J., Qian, C. (2022). Dual Adaptive Transformations for Weakly Supervised Point Cloud Segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13691. Springer, Cham. https://doi.org/10.1007/978-3-031-19821-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19821-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19820-5

  • Online ISBN: 978-3-031-19821-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics