Skip to main content

OpenLDN: Learning to Discover Novel Classes for Open-World Semi-Supervised Learning

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13691))

Included in the following conference series:

Abstract

Semi-supervised learning (SSL) is one of the dominant approaches to address the annotation bottleneck of supervised learning. Recent SSL methods can effectively leverage a large repository of unlabeled data to improve performance while relying on a small set of labeled data. One common assumption in most SSL methods is that the labeled and unlabeled data are from the same data distribution. However, this is hardly the case in many real-world scenarios, which limits their applicability. In this work, instead, we attempt to solve the challenging open-world SSL problem that does not make such an assumption. In the open-world SSL problem, the objective is to recognize samples of known classes, and simultaneously detect and cluster samples belonging to novel classes present in unlabeled data. This work introduces OpenLDN that utilizes a pairwise similarity loss to discover novel classes. Using a bi-level optimization rule this pairwise similarity loss exploits the information available in the labeled set to implicitly cluster novel class samples, while simultaneously recognizing samples from known classes. After discovering novel classes, OpenLDN transforms the open-world SSL problem into a standard SSL problem to achieve additional performance gains using existing SSL methods. Our extensive experiments demonstrate that OpenLDN outperforms the current state-of-the-art methods on multiple popular classification benchmarks while providing a better accuracy/training time trade-off. Code: https://github.com/nayeemrizve/OpenLDN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). Software available from tensorflow.org. https://www.tensorflow.org/

  2. Arazo, E., Ortego, D., Albert, P., O’Connor, N.E., McGuinness, K.: Pseudo-labeling and confirmation bias in deep semi-supervised learning. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2020)

    Google Scholar 

  3. Bard, J.F.: Practical Bilevel Optimization: Algorithms and Applications, vol. 30. Springer, New York (2013). https://doi.org/10.1007/978-1-4757-2836-1

    Book  MATH  Google Scholar 

  4. Bendale, A., Boult, T.: Towards open world recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1893–1902 (2015)

    Google Scholar 

  5. Berthelot, D., et al.: RemixMatch: semi-supervised learning with distribution matching and augmentation anchoring. In: International Conference on Learning Representations (2020)

    Google Scholar 

  6. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.A.: MixMatch: a holistic approach to semi-supervised learning. In: Advances in Neural Information Processing Systems 32, pp. 5049–5059. Curran Associates, Inc. (2019)

    Google Scholar 

  7. Cao, K., Brbic, M., Leskovec, J.: Open-world semi-supervised learning. In: International Conference on Learning Representations (2022). https://openreview.net/forum?id=O-r8LOR-CCA

  8. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 139–156. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_9

    Chapter  Google Scholar 

  9. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. In: Advances in Neural Information Processing Systems 33 (2020)

    Google Scholar 

  10. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)

    Google Scholar 

  11. Chang, J., Wang, L., Meng, G., Xiang, S., Pan, C.: Deep adaptive image clustering. In: Proceedings of the IEEE international Conference on Computer Vision, pp. 5879–5887 (2017)

    Google Scholar 

  12. Chapelle, O., Zien, A.: Semi-supervised classification by low density separation. In: AISTATS, vol. 2005, pp. 57–64. Citeseer (2005)

    Google Scholar 

  13. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  14. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. arXiv preprint arXiv:2002.05709 (2020)

  15. Chen, T., Kornblith, S., Swersky, K., Norouzi, M., Hinton, G.E.: Big self-supervised models are strong semi-supervised learners. In: Advances in Neural Information Processing Systems 33 (2020)

    Google Scholar 

  16. Chen, Y., Zhu, X., Li, W., Gong, S.: Semi-supervised learning under class distribution mismatch. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3569–3576 (2020)

    Google Scholar 

  17. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  18. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1422–1430 (2015)

    Google Scholar 

  19. Fini, E., Sangineto, E., Lathuilière, S., Zhong, Z., Nabi, M., Ricci, E.: A unified objective for novel class discovery. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9284–9292 (2021)

    Google Scholar 

  20. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. Proceedings of Machine Learning Research, International Convention Centre, Sydney, Australia, 06–11 August 2017, vol. 70, pp. 1126–1135. PMLR (2017). http://proceedings.mlr.press/v70/finn17a.html

  21. Gal, Y., Islam, R., Ghahramani, Z.: Deep Bayesian active learning with image data. In: International Conference on Machine Learning, pp. 1183–1192. PMLR (2017)

    Google Scholar 

  22. Gammerman, A., Vovk, V., Vapnik, V.: Learning by transduction. In: Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, UAI 1998, pp. 148–155. Morgan Kaufmann Publishers Inc., San Francisco (1998)

    Google Scholar 

  23. Guo, L.Z., Zhang, Z.Y., Jiang, Y., Li, Y.F., Zhou, Z.H.: Safe deep semi-supervised learning for unseen-class unlabeled data. In: International Conference on Machine Learning, pp. 3897–3906. PMLR (2020)

    Google Scholar 

  24. Han, K., Rebuffi, S.A., Ehrhardt, S., Vedaldi, A., Zisserman, A.: Automatically discovering and learning new visual categories with ranking statistics. In: International Conference on Learning Representations (2020)

    Google Scholar 

  25. Han, K., Vedaldi, A., Zisserman, A.: Learning to discover novel visual categories via deep transfer clustering. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8401–8409 (2019)

    Google Scholar 

  26. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  27. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  28. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  29. Hsu, Y.C., Lv, Z., Kira, Z.: Learning to cluster in order to transfer across domains and tasks. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=ByRWCqvT-

  30. Hsu, Y.C., Lv, Z., Schlosser, J., Odom, P., Kira, Z.: Multi-class classification without multi-class labels. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=SJzR2iRcK7

  31. Jia, X., Han, K., Zhu, Y., Green, B.: Joint representation learning and novel category discovery on single-and multi-modal data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 610–619 (2021)

    Google Scholar 

  32. Joachims, T.: Transductive inference for text classification using support vector machines. In: ICML, vol. 99, pp. 200–209 (1999)

    Google Scholar 

  33. Kardan, N., Stanley, K.O.: Mitigating fooling with competitive overcomplete output layer neural networks. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 518–525. IEEE (2017)

    Google Scholar 

  34. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  35. Kingma, D.P., Mohamed, S., Rezende, D.J., Welling, M.: Semi-supervised learning with deep generative models. In: Advances in Neural Information Processing Systems, pp. 3581–3589 (2014)

    Google Scholar 

  36. Konyushkova, K., Sznitman, R., Fua, P.: Learning active learning from data. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017). https://proceedings.neurips.cc/paper/2017/file/8ca8da41fe1ebc8d3ca31dc14f5fc56c-Paper.pdf

  37. Kornblith, S., Shlens, J., Le, Q.V.: Do better ImageNet models transfer better? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2661–2671 (2019)

    Google Scholar 

  38. Krizhevsky, A., Nair, V., Hinton, G.: CIFAR-10 (Canadian Institute for Advanced Research)

    Google Scholar 

  39. Krizhevsky, A., Nair, V., Hinton, G.: CIFAR-100 (Canadian Institute for Advanced Research)

    Google Scholar 

  40. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logist. Q. 2(1–2), 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  41. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. In: ICLR (Poster). OpenReview.net (2017)

    Google Scholar 

  42. Le, Y., Yang, X.: Tiny ImageNet visual recognition challenge. CS 231N 7(7), 3 (2015)

    Google Scholar 

  43. Lee, D.H.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks (2013)

    Google Scholar 

  44. Liu, B., Wu, Z., Hu, H., Lin, S.: Deep metric transfer for label propagation with limited annotated data. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  45. Miyato, T., Maeda, S., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 41, 1979–1993 (2018)

    Article  Google Scholar 

  46. Miyato, T., Maeda, S., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1979–1993 (2018)

    Article  Google Scholar 

  47. Oliver, A., Odena, A., Raffel, C., Cubuk, E.D., Goodfellow, I.J.: Realistic evaluation of deep semi-supervised learning algorithms. arXiv preprint arXiv:1804.09170 (2018)

  48. Parkhi, O.M., Vedaldi, A., Zisserman, A., Jawahar, C.V.: Cats and dogs. In: IEEE Conference on Computer Vision and Pattern Recognition (2012)

    Google Scholar 

  49. Paszke, A., et al.: Automatic differentiation in PyTorch (2017)

    Google Scholar 

  50. Pu, Y., et al.: Variational autoencoder for deep learning of images, labels and captions. In: Advances in Neural Information Processing Systems, pp. 2352–2360 (2016)

    Google Scholar 

  51. Rizve, M.N., Duarte, K., Rawat, Y.S., Shah, M.: In defense of pseudo-labeling: an uncertainty-aware pseudo-label selection framework for semi-supervised learning. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=-ODN6SbiUU

  52. Rizve, M.N., Kardan, N., Shah, M.: Towards realistic semi-supervised learning. In: Farinella, T. (ed.) ECCV 2022. LNCS, vol. 13691, pp. xx–yy. Springer, Cham (2022)

    Google Scholar 

  53. Rizve, M.N., Khan, S., Khan, F.S., Shah, M.: Exploring complementary strengths of invariant and equivariant representations for few-shot learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10836–10846 (2021)

    Google Scholar 

  54. Sajjadi, M., Javanmardi, M., Tasdizen, T.: Regularization with stochastic transformations and perturbations for deep semi-supervised learning. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29, pp. 1163–1171. Curran Associates, Inc. (2016)

    Google Scholar 

  55. Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set approach. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=H1aIuk-RW

  56. Sharif Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 806–813 (2014)

    Google Scholar 

  57. Shi, W., Gong, Y., Ding, C., Ma, Z., Tao, X., Zheng, N.: Transductive semi-supervised deep learning using min-max features. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 311–327. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_19

    Chapter  Google Scholar 

  58. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Advances in Neural Information Processing Systems, pp. 4077–4087 (2017)

    Google Scholar 

  59. Sohn, K., et al.: FixMatch: simplifying semi-supervised learning with consistency and confidence. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 596–608. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper/2020/file/06964dce9addb1c5cb5d6e3d9838f733-Paper.pdf

  60. Sun, X., Yang, Z., Zhang, C., Ling, K.V., Peng, G.: Conditional Gaussian distribution learning for open set recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13480–13489 (2020)

    Google Scholar 

  61. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  62. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. arXiv preprint arXiv:1703.01780 (2017)

  63. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems 30, pp. 1195–1204. Curran Associates, Inc. (2017)

    Google Scholar 

  64. Van Gansbeke, W., Vandenhende, S., Georgoulis, S., Proesmans, M., Van Gool, L.: SCAN: learning to classify images without labels. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 268–285. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_16

    Chapter  Google Scholar 

  65. Verma, V., Kawaguchi, K., Lamb, A., Kannala, J., Bengio, Y., Lopez-Paz, D.: Interpolation consistency training for semi-supervised learning. arXiv preprint arXiv:1903.03825 (2019)

  66. Vinyals, O., Blundell, C., Lillicrap, T., kavukcuoglu, k., Wierstra, D.: Matching networks for one shot learning. In: Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29, pp. 3630–3638. Curran Associates, Inc. (2016). http://papers.nips.cc/paper/6385-matching-networks-for-one-shot-learning.pdf

  67. Wu, J., et al.: Deep comprehensive correlation mining for image clustering. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8150–8159 (2019)

    Google Scholar 

  68. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: International Conference on Machine Learning, pp. 478–487. PMLR (2016)

    Google Scholar 

  69. Xie, Q., Dai, Z., Hovy, E., Luong, M.T., Le, Q.V.: Unsupervised data augmentation for consistency training. arXiv preprint arXiv:1904.12848 (2019)

  70. Yang, B., Fu, X., Sidiropoulos, N.D., Hong, M.: Towards k-means-friendly spaces: simultaneous deep learning and clustering. In: International Conference on Machine Learning, pp. 3861–3870. PMLR (2017)

    Google Scholar 

  71. Yang, J., Parikh, D., Batra, D.: Joint unsupervised learning of deep representations and image clusters. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5147–5156 (2016)

    Google Scholar 

  72. Asano, Y.M., Rupprecht, C., Vedaldi, A.: Self-labelling via simultaneous clustering and representation learning. In: International Conference on Learning Representations (2020). https://openreview.net/forum?id=Hyx-jyBFPr

  73. Zamir, A.R., Sax, A., Shen, W., Guibas, L.J., Malik, J., Savarese, S.: Taskonomy: Disentangling task transfer learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3712–3722 (2018)

    Google Scholar 

  74. Zhao, B., Han, K.: Novel visual category discovery with dual ranking statistics and mutual knowledge distillation. In: Advances in Neural Information Processing Systems 34, pp. 22982–22994 (2021)

    Google Scholar 

  75. Zhao, X., Krishnateja, K., Iyer, R., Chen, F.: Robust semi-supervised learning with out of distribution data. arXiv preprint arXiv:2010.03658 (2020)

  76. Zhong, Z., Fini, E., Roy, S., Luo, Z., Ricci, E., Sebe, N.: Neighborhood contrastive learning for novel class discovery. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10867–10875 (2021)

    Google Scholar 

  77. Zhong, Z., Zhu, L., Luo, Z., Li, S., Yang, Y., Sebe, N.: OpenMix: reviving known knowledge for discovering novel visual categories in an open world. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9462–9470 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamshad Nayeem Rizve .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 330 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rizve, M.N., Kardan, N., Khan, S., Shahbaz Khan, F., Shah, M. (2022). OpenLDN: Learning to Discover Novel Classes for Open-World Semi-Supervised Learning. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13691. Springer, Cham. https://doi.org/10.1007/978-3-031-19821-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19821-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19820-5

  • Online ISBN: 978-3-031-19821-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics