Skip to main content

Learning Unbiased Transferability for Domain Adaptation by Uncertainty Modeling

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13691))

Included in the following conference series:

Abstract

Domain adaptation (DA) aims to transfer knowledge learned from a labeled source domain to an unlabeled or a less labeled but related target domain. Ideally, the source and target distributions should be aligned to each other equally to achieve unbiased knowledge transfer. However, due to the significant imbalance between the amount of annotated data in the source and target domains, usually only the target distribution is aligned to the source domain, leading to adapting unnecessary source specific knowledge to the target domain, i.e., biased domain adaptation. To resolve this problem, in this work, we delve into the transferability estimation problem in domain adaptation and propose a non-intrusive Unbiased Transferability Estimation Plug-in (UTEP) by modeling the uncertainty of a discriminator in adversarial-based DA methods to optimize unbiased transfer. We theoretically analyze the effectiveness of the proposed approach to unbiased transferability learning in DA. Furthermore, to alleviate the impact of imbalanced annotated data, we utilize the estimated uncertainty for pseudo label selection of unlabeled samples in the target domain, which helps achieve better marginal and conditional distribution alignments between domains. Extensive experimental results on a high variety of DA benchmark datasets show that the proposed approach can be readily incorporated into various adversarial-based DA methods, achieving state-of-the-art performance.

J. Hu and H. Zhong: Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arjovsky, M., Bottou, L., Gulrajani, I., Lopez-Paz, D.: Invariant risk minimization. arXiv preprint arXiv:1907.02893 (2019)

  2. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79, 151–175 (2010)

    Article  MathSciNet  Google Scholar 

  3. Ben-David, S., Blitzer, J., Crammer, K., Pereira, F.: Analysis of representations for domain adaptation. Adv. Neural Inf. Process. Syst. 19, 1–8 (2006)

    Google Scholar 

  4. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.A.: Mixmatch: a holistic approach to semi-supervised learning. Adv. Neural Inf. Process. Syst. 32, 1–11 (2019)

    Google Scholar 

  5. Bickel, S., Scheffer, T.: Dirichlet-enhanced spam filtering based on biased samples. In: NIPS (2007)

    Google Scholar 

  6. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in neural network. In: ICML (2015)

    Google Scholar 

  7. Chen, C., et al.: Progressive feature alignment for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 627–636 (2019)

    Google Scholar 

  8. Chen, X., Wang, S., Long, M., Wang, J.: Transferability vs. discriminability: batch spectral penalization for adversarial domain adaptation. In: International Conference on Machine Learning, pp. 1081–1090. PMLR (2019)

    Google Scholar 

  9. Cortes, C., Mansour, Y., Mohri, M.: Learning bounds for importance weighting. In: NIPS (2010)

    Google Scholar 

  10. Courty, N., Flamary, R., Tuia, D., Rakotomamonjy, A.: Optimal transport for domain adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 39(9), 1853–1865 (2016)

    Article  Google Scholar 

  11. Cui, S., Wang, S., Zhuo, J., Li, L., Huang, Q., Tian, Q.: Towards discriminability and diversity: Batch nuclear-norm maximization under label insufficient situations. In: CVPR (2020)

    Google Scholar 

  12. Der Kiureghian, A., Ditlevsen, O.: Aleatory or epistemic? Does it matter? Struct. Saf. 31(2), 105–112 (2009)

    Article  Google Scholar 

  13. Donahue, J., et al.: DeCAF: a deep convolutional activation feature for generic visual recognition. In: International Conference on Machine Learning, pp. 647–655. PMLR (2014)

    Google Scholar 

  14. French, G., Mackiewicz, M., Fisher, M.: Self-ensembling for visual domain adaptation. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  15. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: ICML (2016)

    Google Scholar 

  16. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17, 2096–3000 (2016)

    MathSciNet  Google Scholar 

  17. Grandvalet, Y., Bengio, Y., et al.: Semi-supervised learning by entropy minimization. CAP 367, 281–296 (2005)

    Google Scholar 

  18. Guan, D., Huang, J., Xiao, A., Lu, S., Cao, Y.: Uncertainty-aware unsupervised domain adaptation in object detection. IEEE Trans. Multimed. 24, 2502–2514 (2021)

    Article  Google Scholar 

  19. Han, Z., Sun, H., Yin, Y.: Learning transferable parameters for unsupervised domain adaptation. arXiv preprint arXiv:2108.06129 (2021)

  20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  21. Hoffman, J., et al.: CyCADA: cycle-consistent adversarial domain adaptation. In: International Conference on Machine Learning, pp. 1989–1998. PMLR (2018)

    Google Scholar 

  22. Hou, Y., Zheng, L.: Visualizing adapted knowledge in domain transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13824–13833, June 2021

    Google Scholar 

  23. Hu, J., Tuo, H., Wang, C., Qiao, L., Zhong, H., Jing, Z.: Multi-weight partial domain adaptation. In: BMVC (2019)

    Google Scholar 

  24. Hu, J., et al.: Discriminative partial domain adversarial network. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12372, pp. 632–648. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58583-9_38

    Chapter  Google Scholar 

  25. Hu, J., Tuo, H., Wang, C., Zhong, H., Pan, H., Jing, Z.: Unsupervised satellite image classification based on partial transfer learning. Aerosp. Syst. 3(1), 21–28 (2019). https://doi.org/10.1007/s42401-019-00038-6

    Article  Google Scholar 

  26. Hu, J., et al.: Self-adaptive partial domain adaptation. arXiv preprint arXiv:2109.08829 (2021)

  27. Hu, L., Kan, M., Shan, S., Chen, X.: Unsupervised domain adaptation with hierarchical gradient synchronization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4043–4052 (2020)

    Google Scholar 

  28. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: SqueezeNet: alexnet-level accuracy with 50\(\times \) fewer parameters and\(<\)0.5 mb model size. arXiv preprint arXiv:1602.07360 (2016)

  29. Jiang, J., Baixu, C., Bo, F., Mingsheng, L.: Transfer-learning-library. GitHub (2020)

    Google Scholar 

  30. Jin, Y., Wang, X., Long, M., Wang, J.: Minimum class confusion for versatile domain adaptation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) .: Minimum class confusion for versatile domain adaptation. LNCS, vol. 12366, pp. 464–480. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1_28

    Chapter  Google Scholar 

  31. Kang, G., Jiang, L., Yang, Y., Hauptmann, A.G.: Contrastive adaptation network for unsupervised domain adaptation. In: CVPR, pp. 4893–4902 (2019)

    Google Scholar 

  32. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? arXiv preprint arXiv:1703.04977 (2017)

  33. Kurmi, V.K., Kumar, S., Namboodiri, V.P.: Attending to discriminative certainty for domain adaptation. In: CVPR, pp. 491–500 (2019)

    Google Scholar 

  34. Li, B., Wang, Y., Zhang, S., Li, D., Keutzer, K., Darrell, T., Zhao, H.: Learning invariant representations and risks for semi-supervised domain adaptation. In: CVPR (2021)

    Google Scholar 

  35. Li, G., Kang, G., Zhu, Y., Wei, Y., Yang, Y.: Domain consensus clustering for universal domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9757–9766 (June 2021)

    Google Scholar 

  36. Li, J., Chen, E., Ding, Z., Zhu, L., Shen, H.T.: Maximum density divergence for domain adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 43, 3918–3930 (2020)

    Article  Google Scholar 

  37. Liang, J., He, R., Sun, Z., Tan, T.: Exploring uncertainty in pseudo-label guided unsupervised domain adaptation. Pattern Recogn. 96, 106996 (2019)

    Article  Google Scholar 

  38. Liu, H., Wang, J., Long, M.: Cycle self-training for domain adaptation. arXiv preprint arXiv:2103.03571 (2021)

  39. Long, M., Cao, Z., Wang, J., Jordan, M.I.: Conditional adversarial domain adaptation. In: NeurIPS (2018)

    Google Scholar 

  40. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: ICML (2015)

    Google Scholar 

  41. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Unsupervised domain adaptation with residual transfer networks. arXiv preprint arXiv:1602.04433 (2016)

  42. Louizos, C., Welling, M.: Multiplicative normalizing flows for variational bayesian neural networks. In: ICML (2017)

    Google Scholar 

  43. Luo, Y.W., Ren, C.X.: Conditional bures metric for domain adaptation. In: CVPR (2021)

    Google Scholar 

  44. Luo, Z., Zou, Y., Hoffman, J., Fei-Fei, L.: Label efficient learning of transferable representations across domains and tasks. arXiv preprint arXiv:1712.00123 (2017)

  45. Pan, Y., Yao, T., Li, Y., Wang, Y., Ngo, C.W., Mei, T.: Transferrable prototypical networks for unsupervised domain adaptation. In: CVPR (2019)

    Google Scholar 

  46. Park, S., Bastani, O., Weimer, J., Lee, I.: Calibrated prediction with covariate shift via unsupervised domain adaptation. In: AISTATS (2020)

    Google Scholar 

  47. Parmar, N., et al.: Image transformer. In: International Conference on Machine Learning, pp. 4055–4064. PMLR (2018)

    Google Scholar 

  48. Pawlowski, N., Brock, A., Lee, M.C.H., Rajchl, M., Glocker, B.: Implicit weight uncertainty in neural networks. arXiv preprint arXiv:1711.01297 (2017)

  49. Qin, J.: Inferences for case-control and semiparametric two-sample density ratio models. Biometrika 85(3), 619–630 (1998)

    Article  MathSciNet  Google Scholar 

  50. Rizve, M.N., Duarte, K., Rawat, Y.S., Shah, M.: In defense of pseudo-labeling: an uncertainty-aware pseudo-label selection framework for semi-supervised learning. In: ICLR (2020)

    Google Scholar 

  51. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_16

    Chapter  Google Scholar 

  52. Saito, K., Kim, D., Sclaroff, S., Darrell, T., Saenko, K.: Semi-supervised domain adaptation via minimax entropy. In: ICCV (2019)

    Google Scholar 

  53. Tang, H., Chen, K., Jia, K.: Unsupervised domain adaptation via structurally regularized deep clustering. In: CVPR, pp. 8725–8735 (2020)

    Google Scholar 

  54. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: CVPR (2017)

    Google Scholar 

  55. Wang, X., Li, L., Ye, W., Long, M., Wang, J.: Transferable attention for domain adaptation. In: AAAI (2019)

    Google Scholar 

  56. Wang, X., Long, M., Wang, J., Jordan, M.: Transferable calibration with lower bias and variance in domain adaptation. Adv. Neural Inf. Process. Syst. 33, 19212–19223 (2020)

    Google Scholar 

  57. Wen, J., Zheng, N., Yuan, J., Gong, Z., Chen, C.: Bayesian uncertainty matching for unsupervised domain adaptation. arXiv preprint arXiv:1906.09693 (2019)

  58. Xiao, N., Zhang, L.: Dynamic weighted learning for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15242–15251, June 2021

    Google Scholar 

  59. Xu, R., Li, G., Yang, J., Lin, L.: Larger norm more transferable: an adaptive feature norm approach for unsupervised domain adaptation. In: ICCV, pp. 1426–1435 (2019)

    Google Scholar 

  60. Yang, X., Hou, L., Zhou, Y., Wang, W., Yan, J.: Dense label encoding for boundary discontinuity free rotation detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15819–15829 (2021)

    Google Scholar 

  61. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? arXiv preprint arXiv:1411.1792 (2014)

  62. You, K., Wang, X., Long, M., Jordan, M.: Towards accurate model selection in deep unsupervised domain adaptation. In: International Conference on Machine Learning, pp. 7124–7133. PMLR (2019)

    Google Scholar 

  63. Zhang, J., Ding, Z., Li, W., Ogunbona, P.: Importance weighted adversarial nets for partial domain adaptation. In: CVPR (2018)

    Google Scholar 

  64. Zhang, S., Wu, G., Costeira, J.P., Moura, J.M.: Understanding traffic density from large-scale web camera data. In: CVPR (2017)

    Google Scholar 

  65. Zhang, S., Tuo, H., Hu, J., Jing, Z.: Domain adaptive yolo for one-stage cross-domain detection. arXiv preprint arXiv:2106.13939 (2021)

  66. Zhang, Y., Liu, T., Long, M., Jordan, M.: Bridging theory and algorithm for domain adaptation. In: International Conference on Machine Learning, pp. 7404–7413. PMLR (2019)

    Google Scholar 

  67. Zheng, Z., Yang, Y.: Rectifying pseudo label learning via uncertainty estimation for domain adaptive semantic segmentation. Int. J. Comput. Vision. 129, 1106–1120 (2021)

    Article  Google Scholar 

  68. Zhong, H., Tuo, H., Wang, C., Ren, X., Hu, J., Qiao, L.: Source-constraint adversarial domain adaptation. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 2486–2490. IEEE (2019)

    Google Scholar 

  69. Zou, Z., Qu, X., Zhou, P., Xu, S., Ye, J.: Coarse to fine: Domain adaptive crowd counting via adversarial scoring network (2021)

    Google Scholar 

Download references

Acknowledgement

This work was in part supported by Vision Semantics Limited, Alan Turing Institute, Open Research Projects of Zhejiang Lab (No. 2021KB0AB04), Zhejiang Provincial Natural Science Foundation of China (No. LQ21F020004), Natural Science Foundation of China (No. 61906176), and China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Hu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 243 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, J., Zhong, H., Yang, F., Gong, S., Wu, G., Yan, J. (2022). Learning Unbiased Transferability for Domain Adaptation by Uncertainty Modeling. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13691. Springer, Cham. https://doi.org/10.1007/978-3-031-19821-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19821-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19820-5

  • Online ISBN: 978-3-031-19821-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics