Skip to main content

RankSeg: Adaptive Pixel Classification with Image Category Ranking for Segmentation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13689))

Included in the following conference series:

Abstract

The segmentation task has traditionally been formulated as a complete-label (We use the term “complete label” to represent the set of all predefined categories in the dataset.) pixel classification task to predict a class for each pixel from a fixed number of predefined semantic categories shared by all images or videos. Yet, following this formulation, standard architectures will inevitably encounter various challenges under more realistic settings where the scope of categories scales up (e.g., beyond the level of \(1\textrm{k}\)). On the other hand, in a typical image or video, only a few categories, i.e., a small subset of the complete label are present. Motivated by this intuition, in this paper, we propose to decompose segmentation into two sub-problems: (i) image-level or video-level multi-label classification and (ii) pixel-level rank-adaptive selected-label classification. Given an input image or video, our framework first conducts multi-label classification over the complete label, then sorts the complete label and selects a small subset according to their class confidence scores. We then use a rank-adaptive pixel classifier to perform the pixel-wise classification over only the selected labels, which uses a set of rank-oriented learnable temperature parameters to adjust the pixel classifications scores. Our approach is conceptually general and can be used to improve various existing segmentation frameworks by simply using a lightweight multi-label classification head and rank-adaptive pixel classifier. We demonstrate the effectiveness of our framework with competitive experimental results across four tasks, including image semantic segmentation, image panoptic segmentation, video instance segmentation, and video semantic segmentation. Especially, with our RankSeg, Mask2Former gains +\(0.8\%\)/+\(0.7\%\)/+\(0.7\%\) on ADE20K panoptic segmentation/YouTubeVIS 2019 video instance segmentation/VSPW video semantic segmentation benchmarks respectively. Code is available at: https://github.com/openseg-group/RankSeg.

H. He and Y. Yuan—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use “label”, “category”, and “class” interchangeably.

  2. 2.

    We set \(\tau _1=\tau _2=\cdots =\tau _\kappa \) for all baseline segmentation experiments.

  3. 3.

    https://paperswithcode.com/task/multi-label-classification.

  4. 4.

    Segmenter w/ ViT-L: \(53.63\%\) vs. Swin-L: \(53.5\%\) on ADE20K.

  5. 5.

    Different from the semantic segmentation task, the multi-label image classification task does not require high-resolution representations.

  6. 6.

    We choose Swin-L by following the MODEL_ZOO of the official Mask2Former implementation: https://github.com/facebookresearch/Mask2Former.

  7. 7.

    https://github.com/SlongLiu/query2labels.

  8. 8.

    https://github.com/facebookresearch/Mask2Former.

References

  1. Arbeláez, P., Hariharan, B., Gu, C., Gupta, S., Bourdev, L., Malik, J.: Semantic segmentation using regions and parts. In: CVPR (2012)

    Google Scholar 

  2. Athar, A., Mahadevan, S., Os̆ep, A., Leal-Taixé, L., Leibe, B.: STEm-Seg: spatio-temporal embeddings for instance segmentation in videos. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 158–177. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_10

    Chapter  Google Scholar 

  3. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. PAMI 39, 2481–2495 (2017)

    Article  Google Scholar 

  4. Bao, H., Dong, L., Wei, F.: BEiT: BERT pre-training of image transformers. arXiv preprint arXiv:2106.08254 (2021)

  5. Ben-Baruch, E., et al.: Asymmetric loss for multi-label classification. arXiv preprint arXiv:2009.14119 (2020)

  6. Bertasius, G., Torresani, L.: Classifying, segmenting, and tracking object instances in video with mask propagation. In: CVPR, pp. 9739–9748 (2020)

    Google Scholar 

  7. Caesar, H., Uijlings, J., Ferrari, V.: Region-based semantic segmentation with end-to-end training. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 381–397. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_23

    Chapter  Google Scholar 

  8. Caesar, H., Uijlings, J., Ferrari, V.: COCO-Stuff: thing and stuff classes in context. In: CVPR (2018)

    Google Scholar 

  9. Cao, J., Anwer, R.M., Cholakkal, H., Khan, F.S., Pang, Y., Shao, L.: SipMask: spatial information preservation for fast image and video instance segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 1–18. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_1

    Chapter  Google Scholar 

  10. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  11. Chandra, S., Couprie, C., Kokkinos, I.: Deep spatio-temporal random fields for efficient video segmentation. In: CVPR, pp. 8915–8924 (2018)

    Google Scholar 

  12. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv:1706.05587 (2017)

  13. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  14. Chen, T., Xu, M., Hui, X., Wu, H., Lin, L.: Learning semantic-specific graph representation for multi-label image recognition. In: ICCV (2019)

    Google Scholar 

  15. Chen, Z., et al.: Vision transformer adapter for dense predictions. arXiv preprint arXiv:2205.08534 (2022)

  16. Cheng, B., Choudhuri, A., Misra, I., Kirillov, A., Girdhar, R., Schwing, A.G.: Mask2Former for video instance segmentation. arXiv preprint arXiv:2112.10764 (2021)

  17. Cheng, B., et al.: Panoptic-DeepLab. arXiv:1910.04751 (2019)

  18. Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R.: Masked-attention mask transformer for universal image segmentation. arXiv preprint arXiv:2112.01527 (2021)

  19. Cheng, B., Schwing, A.G., Kirillov, A.: Per-pixel classification is not all you need for semantic segmentation. arXiv preprint arXiv:2107.06278 (2021)

  20. Contributors, M.: MMSegmentation: OpenMMLab semantic segmentation toolbox and benchmark. https://github.com/open-mmlab/mmsegmentation (2020)

  21. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: RandAugment: practical automated data augmentation with a reduced search space. In: CVPRW, pp. 702–703 (2020)

    Google Scholar 

  22. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552 (2017)

  23. Fu, J., et al.: Dual attention network for scene segmentation. In: CVPR, pp. 3146–3154 (2019)

    Google Scholar 

  24. Fu, Y., Yang, L., Liu, D., Huang, T.S., Shi, H.: CompFeat: comprehensive feature aggregation for video instance segmentation. arXiv preprint arXiv:2012.03400, 6 (2020)

  25. Gadde, R., Jampani, V., Gehler, P.V.: Semantic video CNNs through representation warping. In: ICCV, pp. 4453–4462 (2017)

    Google Scholar 

  26. Gould, S., Fulton, R., Koller, D.: Decomposing a scene into geometric and semantically consistent regions. In: ICCV (2009)

    Google Scholar 

  27. Gu, C., Lim, J.J., Arbelaez, P., Malik, J.: Recognition using regions. In: CVPR (2009)

    Google Scholar 

  28. Guo, H., Zheng, K., Fan, X., Yu, H., Wang, S.: Visual attention consistency under image transforms for multi-label image classification. In: CVPR (2019)

    Google Scholar 

  29. Gupta, A., Dollar, P., Girshick, R.: LVIS: a dataset for large vocabulary instance segmentation. In: CVPR, pp. 5356–5364 (2019)

    Google Scholar 

  30. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR, pp. 9729–9738 (2020)

    Google Scholar 

  31. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  32. Hu, A., Kendall, A., Cipolla, R.: Learning a spatio-temporal embedding for video instance segmentation. arXiv preprint arXiv:1912.08969 (2019)

  33. Hu, H., Zhou, G.T., Deng, Z., Liao, Z., Mori, G.: Learning structured inference neural networks with label relations. In: CVPR (2016)

    Google Scholar 

  34. Hu, P., Caba, F., Wang, O., Lin, Z., Sclaroff, S., Perazzi, F.: Temporally distributed networks for fast video semantic segmentation. In: CVPR, pp. 8818–8827 (2020)

    Google Scholar 

  35. Huang, Z., Wang, X., Huang, L., Huang, C., Wei, Y., Liu, W.: CCNet: criss-cross attention for semantic segmentation. In: CVPR, pp. 603–612 (2019)

    Google Scholar 

  36. Hur, J., Roth, S.: Joint optical flow and temporally consistent semantic segmentation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9913, pp. 163–177. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46604-0_12

    Chapter  Google Scholar 

  37. Hwang, S., Heo, M., Oh, S.W., Kim, S.J.: Video instance segmentation using inter-frame communication transformers. In: NIPS 34 (2021)

    Google Scholar 

  38. Jain, S., Wang, X., Gonzalez, J.E.: Accel: a corrective fusion network for efficient semantic segmentation on video. In: CVPR, pp. 8866–8875 (2019)

    Google Scholar 

  39. Jain, S., Paudel, D.P., Danelljan, M., Van Gool, L.: Scaling semantic segmentation beyond 1k classes on a single GPU. In: ICCV, pp. 7426–7436 (2021)

    Google Scholar 

  40. Jin, X., et al.: Video scene parsing with predictive feature learning. In: ICCV, pp. 5580–5588 (2017)

    Google Scholar 

  41. Kirillov, A., Girshick, R., He, K., Dollár, P.: Panoptic feature pyramid networks. In: CVPR, pp. 6399–6408 (2019)

    Google Scholar 

  42. Kirillov, A., He, K., Girshick, R., Rother, C., Dollár, P.: Panoptic segmentation. In: CVPR, pp. 9404–9413 (2019)

    Google Scholar 

  43. Kirillov, A., Wu, Y., He, K., Girshick, R.: PointRend: image segmentation as rendering. In: CVPR, pp. 9799–9808 (2020)

    Google Scholar 

  44. Kundu, A., Vineet, V., Koltun, V.: Feature space optimization for semantic video segmentation. In: CVPR, pp. 3168–3175 (2016)

    Google Scholar 

  45. Lanchantin, J., Wang, T., Ordonez, V., Qi, Y.: General multi-label image classification with transformers. In: CVPR (2021)

    Google Scholar 

  46. Li, Q., Qiao, M., Bian, W., Tao, D.: Conditional graphical lasso for multi-label image classification. In: CVPR (2016)

    Google Scholar 

  47. Li, Y., Shi, J., Lin, D.: Low-latency video semantic segmentation. In: CVPR, pp. 5997–6005 (2018)

    Google Scholar 

  48. Li, Z., et al.: arXiv preprint arXiv:2109.03814 (2021)

  49. Lin, C.C., Hung, Y., Feris, R., He, L.: Video instance segmentation tracking with a modified VAE architecture. In: CVPR, pp. 13147–13157 (2020)

    Google Scholar 

  50. Lin, H., Wu, R., Liu, S., Lu, J., Jia, J.: Video instance segmentation with a propose-reduce paradigm. In: CVPR, pp. 1739–1748 (2021)

    Google Scholar 

  51. Liu, S., Zhang, L., Yang, X., Su, H., Zhu, J.: Query2Label: a simple transformer way to multi-label classification. arXiv preprint arXiv:2107.10834 (2021)

  52. Liu, Y., Shen, C., Yu, C., Wang, J.: Efficient semantic video segmentation with per-frame inference. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 352–368. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_21

    Chapter  Google Scholar 

  53. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. arXiv preprint arXiv:2103.14030 (2021)

  54. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)

    Google Scholar 

  55. Mahasseni, B., Todorovic, S., Fern, A.: Budget-aware deep semantic video segmentation. In: CVPR, pp. 1029–1038 (2017)

    Google Scholar 

  56. Miao, J., Wei, Y., Wu, Y., Liang, C., Li, G., Yang, Y.: VSPW: a large-scale dataset for video scene parsing in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4133–4143 (2021)

    Google Scholar 

  57. Mottaghi, R., et al.: The role of context for object detection and semantic segmentation in the wild. In: CVPR (2014)

    Google Scholar 

  58. Neuhold, G., Ollmann, T., Rota Bulo, S., Kontschieder, P.: The mapillary vistas dataset for semantic understanding of street scenes. In: CVPR (2017)

    Google Scholar 

  59. Nilsson, D., Sminchisescu, C.: Semantic video segmentation by gated recurrent flow propagation. In: CVPR, pp. 6819–6828 (2018)

    Google Scholar 

  60. Pohlen, T., Hermans, A., Mathias, M., Leibe, B.: Full-resolution residual networks for semantic segmentation in street scenes. In: CVPR, pp. 4151–4160 (2017)

    Google Scholar 

  61. Ranftl, R., Bochkovskiy, A., Koltun, V.: Vision transformers for dense prediction. In: ICCV, pp. 12179–12188 (2021)

    Google Scholar 

  62. Ridnik, T., Ben-Baruch, E., Noy, A., Zelnik-Manor, L.: ImageNet-21k pretraining for the masses (2021)

    Google Scholar 

  63. Ridnik, T., Lawen, H., Noy, A., Ben Baruch, E., Sharir, G., Friedman, I.: TResNet: high performance GPU-dedicated architecture. In: WACV, pp. 1400–1409 (2021)

    Google Scholar 

  64. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  65. Strudel, R., Garcia, R., Laptev, I., Schmid, C.: Segmenter: transformer for semantic segmentation. arXiv preprint arXiv:2105.05633 (2021)

  66. Takikawa, T., Acuna, D., Jampani, V., Fidler, S.: Gated-SCNN: gated shape CNNs for semantic segmentation. In: ICCV, pp. 5229–5238 (2019)

    Google Scholar 

  67. Uijlings, J.R., Van De Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. IJCV 104, 154–171 (2013). https://doi.org/10.1007/s11263-013-0620-5

    Article  Google Scholar 

  68. Voigtlaender, P., et al.: MOTS: multi-object tracking and segmentation. In: CVPR, pp. 7942–7951 (2019)

    Google Scholar 

  69. Wang, H., Zhu, Y., Adam, H., Yuille, A., Chen, L.C.: Max-DeepLab: end-to-end panoptic segmentation with mask transformers. In: CVPR, pp. 5463–5474 (2021)

    Google Scholar 

  70. Wang, J., et al.: Deep high-resolution representation learning for visual recognition. TPAMI 43, 3349–3364 (2019)

    Article  Google Scholar 

  71. Wang, W., Zhou, T., Porikli, F., Crandall, D., Van Gool, L.: A survey on deep learning technique for video segmentation. arXiv preprint arXiv:2107.01153 (2021)

  72. Wang, Y., et al.: End-to-end video instance segmentation with transformers. In: CVPR, pp. 8741–8750 (2021)

    Google Scholar 

  73. Wang, Z., Chen, T., Li, G., Xu, R., Lin, L.: Multi-label image recognition by recurrently discovering attentional regions. In: ICCV (2017)

    Google Scholar 

  74. Wei, Y., Feng, J., Liang, X., Cheng, M.M., Zhao, Y., Yan, S.: Object region mining with adversarial erasing: a simple classification to semantic segmentation approach. In: CVPR (2017)

    Google Scholar 

  75. Wu, J., Jiang, Y., Zhang, W., Bai, X., Bai, S.: SeqFormer: a frustratingly simple model for video instance segmentation. arXiv preprint arXiv:2112.08275 (2021)

  76. Wu, T., Huang, Q., Liu, Z., Wang, Yu., Lin, D.: Distribution-balanced loss for multi-label classification in long-tailed datasets. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 162–178. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_10

    Chapter  Google Scholar 

  77. Xu, Y.S., Fu, T.J., Yang, H.K., Lee, C.Y.: Dynamic video segmentation network. In: CVPR, pp. 6556–6565 (2018)

    Google Scholar 

  78. Yang, L., Fan, Y., Xu, N.: Video instance segmentation. In: ICCV, pp. 5188–5197 (2019)

    Google Scholar 

  79. Ye, J., He, J., Peng, X., Wu, W., Qiao, Yu.: Attention-driven dynamic graph convolutional network for multi-label image recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 649–665. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1_39

    Chapter  Google Scholar 

  80. You, R., Guo, Z., Cui, L., Long, X., Bao, Y., Wen, S.: Cross-modality attention with semantic graph embedding for multi-label classification. In: AAAI (2020)

    Google Scholar 

  81. Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 173–190. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_11

    Chapter  Google Scholar 

  82. Yuan, Y., et al.: HRFormer: high-resolution transformer for dense prediction. arXiv preprint arXiv:2110.09408 (2021)

  83. Yuan, Y., Huang, L., Guo, J., Zhang, C., Chen, X., Wang, J.: OCNet: object context network for scene parsing. arXiv preprint arXiv:1809.00916 (2018)

  84. Yuan, Y., Xie, J., Chen, X., Wang, J.: SegFix: model-agnostic boundary refinement for segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 489–506. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_29

    Chapter  Google Scholar 

  85. Zhang, H., et al.: Context encoding for semantic segmentation. In: CVPR, pp. 7151–7160 (2018)

    Google Scholar 

  86. Zhang, W., Pang, J., Chen, K., Loy, C.C.: K-Net: towards unified image segmentation. arXiv preprint arXiv:2106.14855 (2021)

  87. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: CVPR (2017)

    Google Scholar 

  88. Zheng, S., et al.: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers. In: CVPR, pp. 6881–6890 (2021)

    Google Scholar 

  89. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ADE20K dataset. In: CVPR (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuhui Yuan or Han Hu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 8884 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, H., Yuan, Y., Yue, X., Hu, H. (2022). RankSeg: Adaptive Pixel Classification with Image Category Ranking for Segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13689. Springer, Cham. https://doi.org/10.1007/978-3-031-19818-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19818-2_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19817-5

  • Online ISBN: 978-3-031-19818-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics