Skip to main content

Video Instance Segmentation via Multi-Scale Spatio-Temporal Split Attention Transformer

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

State-of-the-art transformer-based video instance segmentation (VIS) approaches typically utilize either single-scale spatio-temporal features or per-frame multi-scale features during the attention computations. We argue that such an attention computation ignores the multi-scale spatio-temporal feature relationships that are crucial to tackle target appearance deformations in videos. To address this issue, we propose a transformer-based VIS framework, named MS-STS VIS, that comprises a novel multi-scale spatio-temporal split (MS-STS) attention module in the encoder. The proposed MS-STS module effectively captures spatio-temporal feature relationships at multiple scales across frames in a video. We further introduce an attention block in the decoder to enhance the temporal consistency of the detected instances in different frames of a video. Moreover, an auxiliary discriminator is introduced during training to ensure better foreground-background separability within the multi-scale spatio-temporal feature space. We conduct extensive experiments on two benchmarks: Youtube-VIS (2019 and 2021). Our MS-STS VIS achieves state-of-the-art performance on both benchmarks. When using the ResNet50 backbone, our MS-STS achieves a mask AP of 50.1%, outperforming the best reported results in literature by 2.7% and by 4.8% at higher overlap threshold of \(\text {AP}_{\texttt{75}}\), while being comparable in model size and speed on Youtube-VIS 2019 val. set. When using the Swin Transformer backbone, MS-STS VIS achieves mask AP of 61.0% on Youtube-VIS 2019 val. set. Source code is available at https://github.com/OmkarThawakar/MSSTS-VIS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Athar, A., Mahadevan, S., Os̆ep, A., Leal-Taixé, L., Leibe, B.: STEm-Seg: spatio-temporal embeddings for instance segmentation in videos. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 158–177. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_10

    Chapter  Google Scholar 

  2. Bertasius, G., Torresani, L.: Classifying, segmenting, and tracking object instances in video with mask propagation. In: CVPR (2020)

    Google Scholar 

  3. Cao, J., Anwer, R.M., Cholakkal, H., Khan, F.S., Pang, Y., Shao, L.: SipMask: spatial information preservation for fast image and video instance segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 1–18. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_1

    Chapter  Google Scholar 

  4. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  5. Fu, Y., Yang, L., Liu, D., Huang, T.S., Shi, H.: CompFeat: comprehensive feature aggregation for video instance segmentation. In: AAAI (2021)

    Google Scholar 

  6. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  8. Hwang, S., Heo, M., Oh, S.W., Kim, S.J.: Video instance segmentation using inter-frame communication transformers. In: NeurIPS (2021)

    Google Scholar 

  9. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)

    Google Scholar 

  10. Johnander, J., Brissman, E., Danelljan, M., Felsberg, M.: Learning video instance segmentation with recurrent graph neural networks. In: GCPI (2021)

    Google Scholar 

  11. Ke, L., Li, X., Danelljan, M., Tai, Y.W., Tang, C.K., Yu, F.: Prototypical cross-attention networks for multiple object tracking and segmentation. In: NeurIPS (2021)

    Google Scholar 

  12. Kristan, M., et al.: The visual object tracking vot2015 challenge results. In: ICCV workshops (2015)

    Google Scholar 

  13. Li, M., Li, S., Li, L., Zhang, L.: Spatial feature calibration and temporal fusion for effective one-stage video instance segmentation. In: CVPR (2021)

    Google Scholar 

  14. Lin, C., Hung, Y., Feris, R., He, L.: Video instance segmentation tracking with a modified VAE architecture. In: CVPR (2020)

    Google Scholar 

  15. Lin, H., Wu, R., Liu, S., Lu, J., Jia, J.: Video instance segmentation with a propose-reduce paradigm. In: arXiv preprint arXiv:2103.13746 (2021)

  16. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  17. Liu, D., Cui, Y., Tan, W., Chen, Y.: SG-Net: spatial granularity network for one-stage video instance segmentation. In: CVPR (2021)

    Google Scholar 

  18. Paszke, A., et al.: An imperative style, high-performance deep learning library. In: NeurIPS (2019). https://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  19. Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: ICCV (2019)

    Google Scholar 

  20. Vaswani, A., et al.: Pattention is all you need. In: NeurIPS (2017)

    Google Scholar 

  21. Voigtlaender, P., Chai, Y., Schroff, F., Adam, H., Leibe, B., Chen, L.: FEELVOS: fast end-to-end embedding learning for video object segmentation. In: CVPR (2019)

    Google Scholar 

  22. Wang, Y., et al.: End-to-end video instance segmentation with transformers. In: CVPR (2021)

    Google Scholar 

  23. Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep association metric. In: ICIP (2017)

    Google Scholar 

  24. Wu, J., Jiang, Y., Zhang, W., Bai, X., Bai, S.: SeqFormer: a frustratingly simple model for video instance segmentation. In: arXiv preprint arXiv:2112.08275 (2021)

  25. Xu, N., et al.: Youtube-vis dataset 2021 version. https://youtube-vos.org/dataset/vis (2021)

  26. Yang, L., Fan, Y., Xu, N.: Video instance segmentation. In: ICCV (2019)

    Google Scholar 

  27. Yang, L., Wang, Y., Xiong, X., Yang, J., Katsaggelos, A.K.: Efficient video object segmentation via network modulation. In: CVPR (2018)

    Google Scholar 

  28. Yang, S., et al.: Crossover learning for fast online video instance segmentation. In: ICCV (2021)

    Google Scholar 

  29. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: Deformable transformers for end-to-end object detection. In: ICLR (2021)

    Google Scholar 

Download references

Acknowledgements

The work was partially supported by VR grants 2016–05543 and 2018–04673, WASP, ELLIIT, and SNIC funded via grant 2018–05973.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omkar Thawakar .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 9378 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thawakar, O. et al. (2022). Video Instance Segmentation via Multi-Scale Spatio-Temporal Split Attention Transformer. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13689. Springer, Cham. https://doi.org/10.1007/978-3-031-19818-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19818-2_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19817-5

  • Online ISBN: 978-3-031-19818-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics