Abstract
State-of-the-art transformer-based video instance segmentation (VIS) approaches typically utilize either single-scale spatio-temporal features or per-frame multi-scale features during the attention computations. We argue that such an attention computation ignores the multi-scale spatio-temporal feature relationships that are crucial to tackle target appearance deformations in videos. To address this issue, we propose a transformer-based VIS framework, named MS-STS VIS, that comprises a novel multi-scale spatio-temporal split (MS-STS) attention module in the encoder. The proposed MS-STS module effectively captures spatio-temporal feature relationships at multiple scales across frames in a video. We further introduce an attention block in the decoder to enhance the temporal consistency of the detected instances in different frames of a video. Moreover, an auxiliary discriminator is introduced during training to ensure better foreground-background separability within the multi-scale spatio-temporal feature space. We conduct extensive experiments on two benchmarks: Youtube-VIS (2019 and 2021). Our MS-STS VIS achieves state-of-the-art performance on both benchmarks. When using the ResNet50 backbone, our MS-STS achieves a mask AP of 50.1%, outperforming the best reported results in literature by 2.7% and by 4.8% at higher overlap threshold of \(\text {AP}_{\texttt{75}}\), while being comparable in model size and speed on Youtube-VIS 2019 val. set. When using the Swin Transformer backbone, MS-STS VIS achieves mask AP of 61.0% on Youtube-VIS 2019 val. set. Source code is available at https://github.com/OmkarThawakar/MSSTS-VIS.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Athar, A., Mahadevan, S., Os̆ep, A., Leal-Taixé, L., Leibe, B.: STEm-Seg: spatio-temporal embeddings for instance segmentation in videos. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 158–177. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_10
Bertasius, G., Torresani, L.: Classifying, segmenting, and tracking object instances in video with mask propagation. In: CVPR (2020)
Cao, J., Anwer, R.M., Cholakkal, H., Khan, F.S., Pang, Y., Shao, L.: SipMask: spatial information preservation for fast image and video instance segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 1–18. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_1
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Fu, Y., Yang, L., Liu, D., Huang, T.S., Shi, H.: CompFeat: comprehensive feature aggregation for video instance segmentation. In: AAAI (2021)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
Hwang, S., Heo, M., Oh, S.W., Kim, S.J.: Video instance segmentation using inter-frame communication transformers. In: NeurIPS (2021)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)
Johnander, J., Brissman, E., Danelljan, M., Felsberg, M.: Learning video instance segmentation with recurrent graph neural networks. In: GCPI (2021)
Ke, L., Li, X., Danelljan, M., Tai, Y.W., Tang, C.K., Yu, F.: Prototypical cross-attention networks for multiple object tracking and segmentation. In: NeurIPS (2021)
Kristan, M., et al.: The visual object tracking vot2015 challenge results. In: ICCV workshops (2015)
Li, M., Li, S., Li, L., Zhang, L.: Spatial feature calibration and temporal fusion for effective one-stage video instance segmentation. In: CVPR (2021)
Lin, C., Hung, Y., Feris, R., He, L.: Video instance segmentation tracking with a modified VAE architecture. In: CVPR (2020)
Lin, H., Wu, R., Liu, S., Lu, J., Jia, J.: Video instance segmentation with a propose-reduce paradigm. In: arXiv preprint arXiv:2103.13746 (2021)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, D., Cui, Y., Tan, W., Chen, Y.: SG-Net: spatial granularity network for one-stage video instance segmentation. In: CVPR (2021)
Paszke, A., et al.: An imperative style, high-performance deep learning library. In: NeurIPS (2019). https://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: ICCV (2019)
Vaswani, A., et al.: Pattention is all you need. In: NeurIPS (2017)
Voigtlaender, P., Chai, Y., Schroff, F., Adam, H., Leibe, B., Chen, L.: FEELVOS: fast end-to-end embedding learning for video object segmentation. In: CVPR (2019)
Wang, Y., et al.: End-to-end video instance segmentation with transformers. In: CVPR (2021)
Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep association metric. In: ICIP (2017)
Wu, J., Jiang, Y., Zhang, W., Bai, X., Bai, S.: SeqFormer: a frustratingly simple model for video instance segmentation. In: arXiv preprint arXiv:2112.08275 (2021)
Xu, N., et al.: Youtube-vis dataset 2021 version. https://youtube-vos.org/dataset/vis (2021)
Yang, L., Fan, Y., Xu, N.: Video instance segmentation. In: ICCV (2019)
Yang, L., Wang, Y., Xiong, X., Yang, J., Katsaggelos, A.K.: Efficient video object segmentation via network modulation. In: CVPR (2018)
Yang, S., et al.: Crossover learning for fast online video instance segmentation. In: ICCV (2021)
Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: Deformable transformers for end-to-end object detection. In: ICLR (2021)
Acknowledgements
The work was partially supported by VR grants 2016–05543 and 2018–04673, WASP, ELLIIT, and SNIC funded via grant 2018–05973.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Thawakar, O. et al. (2022). Video Instance Segmentation via Multi-Scale Spatio-Temporal Split Attention Transformer. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13689. Springer, Cham. https://doi.org/10.1007/978-3-031-19818-2_38
Download citation
DOI: https://doi.org/10.1007/978-3-031-19818-2_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19817-5
Online ISBN: 978-3-031-19818-2
eBook Packages: Computer ScienceComputer Science (R0)