Skip to main content

Dense Gaussian Processes for Few-Shot Segmentation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13689))

Included in the following conference series:

Abstract

Few-shot segmentation is a challenging dense prediction task, which entails segmenting a novel query image given only a small annotated support set. The key problem is thus to design a method that aggregates detailed information from the support set, while being robust to large variations in appearance and context. To this end, we propose a few-shot segmentation method based on dense Gaussian process (GP) regression. Given the support set, our dense GP learns the mapping from local deep image features to mask values, capable of capturing complex appearance distributions. Furthermore, it provides a principled means of capturing uncertainty, which serves as another powerful cue for the final segmentation, obtained by a CNN decoder. Instead of a one-dimensional mask output, we further exploit the end-to-end learning capabilities of our approach to learn a high-dimensional output space for the GP. Our approach sets a new state-of-the-art on the PASCAL-5\(^i\) and COCO-20\(^i\) benchmarks, achieving an absolute gain of \(+8.4\) mIoU in the COCO-20\(^i\) 5-shot setting. Furthermore, the segmentation quality of our approach scales gracefully when increasing the support set size, while achieving robust cross-dataset transfer. Code and trained models are available at https://github.com/joakimjohnander/dgpnet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen, K., Shelhamer, E., Shin, H., Tenenbaum, J.: Infinite mixture prototypes for few-shot learning. In: International Conference on Machine Learning, pp. 232–241. PMLR (2019)

    Google Scholar 

  2. Azad, R., Fayjie, A.R., Kauffmann, C., Ben Ayed, I., Pedersoli, M., Dolz, J.: On the texture bias for few-shot CNN segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2674–2683 (2021)

    Google Scholar 

  3. Bhat, G., Johnander, J., Danelljan, M., Khan, F.S., Felsberg, M.: Unveiling the power of deep tracking. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 493–509. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_30

    Chapter  Google Scholar 

  4. Boudiaf, M., Kervadec, H., Masud, Z.I., Piantanida, P., Ben Ayed, I., Dolz, J.: Few-shot segmentation without meta-learning: a good transductive inference is all you need? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13979–13988 (2021)

    Google Scholar 

  5. Calandra, R., Peters, J., Rasmussen, C.E., Deisenroth, M.P.: Manifold Gaussian Processes for regression. In: Proceedings of the International Joint Conference on Neural Networks (2016). https://doi.org/10.1109/IJCNN.2016.7727626

  6. Dong, N., Xing, E.P.: Few-shot semantic segmentation with prototype learning. In: British Machine Vision Conference 2018, BMVC 2018 (2019)

    Google Scholar 

  7. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vision (2010). https://doi.org/10.1007/s11263-009-0275-4

    Article  Google Scholar 

  8. Hariharan, B., Arbeláez, P., Bourdev, L., Maji, S., Malik, J.: Semantic contours from inverse detectors. In: Proceedings of the IEEE International Conference on Computer Vision (2011). https://doi.org/10.1109/ICCV.2011.6126343

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. Hu, T., Yang, P., Zhang, C., Yu, G., Mu, Y., Snoek, C.G.: Attention-based multi-context guiding for few-shot semantic segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 8441–8448 (2019)

    Google Scholar 

  11. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings (2015)

    Google Scholar 

  12. Li, G., Jampani, V., Sevilla-Lara, L., Sun, D., Kim, J., Kim, J.: Adaptive prototype learning and allocation for few-shot segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8334–8343 (2021)

    Google Scholar 

  13. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  14. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  15. Liu, L., Cao, J., Liu, M., Guo, Y., Chen, Q., Tan, M.: Dynamic extension nets for few-shot semantic segmentation. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 1441–1449 (2020)

    Google Scholar 

  16. Liu, W., Zhang, C., Lin, G., Liu, F.: CRNet: cross-reference networks for few-shot segmentation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 4164–4172 (2020). https://doi.org/10.1109/CVPR42600.2020.00422

  17. Liu, Y., Zhang, X., Zhang, S., He, X.: Part-aware prototype network for few-shot semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 142–158. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_9

    Chapter  Google Scholar 

  18. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  19. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=Bkg6RiCqY7

  20. Lu, Z., He, S., Zhu, X., Zhang, L., Song, Y.Z., Xiang, T.: Simpler is better: few-shot semantic segmentation with classifier weight transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8741–8750 (2021)

    Google Scholar 

  21. Min, J., Kang, D., Cho, M.: Hypercorrelation squeeze for few-shot segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6941–6952 (2021)

    Google Scholar 

  22. Nguyen, K., Todorovic, S.: Feature weighting and boosting for few-shot segmentation. In: Proceedings of the IEEE International Conference on Computer Vision. vol. 2019-Octob, pp. 622–631 (2019). https://doi.org/10.1109/ICCV.2019.00071

  23. Patacchiola, M., Turner, J., Crowley, E.J., Storkey, A.: Bayesian meta-learning for the few-shot setting via deep kernels. In: Advances in Neural Information Processing Systems (2020)

    Google Scholar 

  24. Rakelly, K., Shelhamer, E., Darrell, T., Efros, A., Levine, S.: Conditional networks for few-shot semantic segmentation. In: 6th International Conference on Learning Representations, ICLR 2018 - Workshop Track Proceedings (2018)

    Google Scholar 

  25. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning (2006). https://doi.org/10.7551/mitpress/3206.001.0001

  26. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  27. Salakhutdinov, R., Hinton, G.: Using deep belief nets to learn covariance kernels for Gaussian processes. In: Advances in Neural Information Processing Systems 20 - Proceedings of the 2007 Conference (2009)

    Google Scholar 

  28. Shaban, A., Bansal, S., Liu, Z., Essa, I., Boots, B.: One-shot learning for semantic segmentation. In: British Machine Vision Conference 2017, BMVC 2017 (2017). https://doi.org/10.5244/c.31.167

  29. Siam, M., Oreshkin, B., Jagersand, M.: AMP: adaptive masked proxies for few-shot segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 2019-Octob, pp. 5248–5257 (2019). https://doi.org/10.1109/ICCV.2019.00535

  30. Snell, J., Zemel, R.: Bayesian few-shot classification with one-vs-each pólya-gamma augmented gaussian processes. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=lgNx56yZh8a

  31. Tian, Z., Zhao, H., Shu, M., Yang, Z., Li, R., Jia, J.: Prior Guided Feature Enrichment Network for few-shot segmentation. IEEE Trans. Pattern Anal. Mach. Intell. (2020). https://doi.org/10.1109/tpami.2020.3013717

    Article  Google Scholar 

  32. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  33. Wang, H., Yang, Y., Cao, X., Zhen, X., Snoek, C., Shao, L.: Variational prototype inference for few-shot semantic segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 525–534 (2021)

    Google Scholar 

  34. Wang, H., Zhang, X., Hu, Y., Yang, Y., Cao, X., Zhen, X.: Few-shot semantic segmentation with democratic attention networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 730–746. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_43

    Chapter  Google Scholar 

  35. Wang, K., Liew, J.H., Zou, Y., Zhou, D., Feng, J.: PANet: few-shot image semantic segmentation with prototype alignment. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 2019-Octob, pp. 9196–9205 (2019). https://doi.org/10.1109/ICCV.2019.00929

  36. Wilson, A.G., Hu, Z., Salakhutdinov, R., Xing, E.P.: Deep kernel learning. In: Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, AISTATS 2016 (2016)

    Google Scholar 

  37. Wu, Z., Shi, X., Lin, G., Cai, J.: Learning meta-class memory for few-shot semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 517–526 (2021)

    Google Scholar 

  38. Xie, G.S., Liu, J., Xiong, H., Shao, L.: Scale-aware graph neural network for few-shot semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5475–5484 (2021)

    Google Scholar 

  39. Xie, G.S., Xiong, H., Liu, J., Yao, Y., Shao, L.: Few-shot semantic segmentation with cyclic memory network. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7293–7302 (2021)

    Google Scholar 

  40. Yang, B., Liu, C., Li, B., Jiao, J., Ye, Q.: Prototype mixture models for few-shot semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 763–778. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_45

  41. Yang, L., Zhuo, W., Qi, L., Shi, Y., Gao, Y.: Mining latent classes for few-shot segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8721–8730 (2021)

    Google Scholar 

  42. Yang, Y., Meng, F., Li, H., Wu, Q., Xu, X., Chen, S.: A new local transformation module for few-shot segmentation. In: Ro, Y.M., Cheng, W.-H., Kim, J., Chu, W.-T., Cui, P., Choi, J.-W., Hu, M.-C., De Neve, W. (eds.) MMM 2020. LNCS, vol. 11962, pp. 76–87. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-37734-2_7

    Chapter  Google Scholar 

  43. Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: Learning a Discriminative Feature Network for Semantic Segmentation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2018). https://doi.org/10.1109/CVPR.2018.00199

  44. Zhang, B., Xiao, J., Qin, T.: Self-guided and cross-guided learning for few-shot segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8312–8321 (2021)

    Google Scholar 

  45. Zhang, C., Lin, G., Liu, F., Guo, J., Wu, Q., Yao, R.: Pyramid graph networks with connection attentions for region-based one-shot semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 2019-Octob, pp. 9586–9594 (2019). https://doi.org/10.1109/ICCV.2019.00968

  46. Zhang, C., Lin, G., Liu, F., Yao, R., Shen, C.: CANET: class-agnostic segmentation networks with iterative refinement and attentive few-shot learning. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2019). https://doi.org/10.1109/CVPR.2019.00536

  47. Zhang, G., Kang, G., Yang, Y., Wei, Y.: Few-shot segmentation via cycle-consistent transformer. In: Advances in Neural Information Processing Systems 34 (2021)

    Google Scholar 

  48. Zhang, X., Wei, Y., Yang, Y., Huang, T.S.: Sg-one: similarity guidance network for one-shot semantic segmentation. IEEE Trans. Cybern. 50(9), 3855–3865 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Wallenberg Artificial Intelligence, Autonomous Systems and Software Program (WASP) funded by Knut and Alice Wallenberg Foundation; ELLIIT; and the ETH Future Computing Laboratory (EFCL), financed by a donation from Huawei Technologies. The computations were enabled by resources provided by the Swedish National Infrastructure for Computing (SNIC), partially funded by the Swedish Research Council through grant agreement no. 2018-05973.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joakim Johnander .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1640 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Johnander, J., Edstedt, J., Felsberg, M., Khan, F.S., Danelljan, M. (2022). Dense Gaussian Processes for Few-Shot Segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13689. Springer, Cham. https://doi.org/10.1007/978-3-031-19818-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19818-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19817-5

  • Online ISBN: 978-3-031-19818-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics