Skip to main content

Variance-Aware Weight Initialization for Point Convolutional Neural Networks

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13688))

Included in the following conference series:

  • 2035 Accesses

Abstract

Appropriate weight initialization has been of key importance to successfully train neural networks. Recently, batch normalization has diminished the role of weight initialization by simply normalizing each layer based on batch statistics. Unfortunately, batch normalization has several drawbacks when applied to small batch sizes, as they are required to cope with memory limitations when learning on point clouds. While well-founded weight initialization strategies can render batch normalization unnecessary and thus avoid these drawbacks, no such approaches have been proposed for point convolutional networks. To fill this gap, we propose a framework to unify the multitude of continuous convolutions. This enables our main contribution, variance-aware weight initialization. We show that this initialization can avoid batch normalization while achieving similar and, in some cases, better performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atzmon, M., Maron, H., Lipman, Y.: Point convolutional neural networks by extension operators. In: ACM Transactions on Graphics (Proc. SIGGRAPH) (2018)

    Google Scholar 

  2. Boulch, A.: ConvPoint: continuous convolutions for point cloud processing. Comput. Graph. 88, 24–34 (2020)

    Google Scholar 

  3. Choy, C., Gwak, J., Savarese, S.: 4D spatio-temporal convnets: minkowski convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3075–3084 (2019)

    Google Scholar 

  4. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: ScanNet: richly-annotated 3D reconstructions of indoor scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5828–5839 (2017)

    Google Scholar 

  5. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics (2010)

    Google Scholar 

  6. Groh, F., Wieschollek, P., Lensch, H.P.A.: Flex-convolution (million-scale point-cloud learning beyond grid-worlds). In: ACCV (2018)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: ICCV, pp. 1026–1034 (2015)

    Google Scholar 

  8. Hermosilla, P., Ritschel, T., Vazquez, P.P., Vinacua, A., Ropinski, T.: Monte Carlo convolution for learning on non-uniformly sampled point clouds. In: ACM Transactions on Graphics (Pro. of SIGGRAPH Asia) (2018)

    Google Scholar 

  9. Hua, B.S., Tran, M.K., Yeung, S.K.: Pointwise convolutional neural networks. In: Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  10. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)

    Google Scholar 

  11. Krähenbühl, P., Doersch, C., Donahue, J., Darrell, T.: Data-dependent initializations of convolutional neural networks. arXiv:1511.06856 (2015)

  12. Lei, H., Akhtar, N., Mian, A.: Octree guided CNN with spherical kernels for 3D point clouds. In: CVPR (2019)

    Google Scholar 

  13. Mao, J., Wang, X., Li, H.: Interpolated convolutional networks for 3D point cloud understanding. In: International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  14. Mishkin, D., Matas, J.: All you need is a good init. arXiv:1511.06422 (2015)

  15. Nekrasov, A., Schult, J., Litany, O., Leibe, B., Engelmann, F.: Mix3D: out-of-context data augmentation for 3D scenes. In: International Conference on 3D Vision (3DV) (2021)

    Google Scholar 

  16. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: CVPR, pp. 652–660 (2017)

    Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 (2014)

  19. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: KPConv: flexible and deformable convolution for point clouds. In: ICCV (2019)

    Google Scholar 

  20. Uy, M.A., Pham, Q.H., Hua, B.S., Nguyen, D.T., Yeung, S.K.: Revisiting point cloud classification: A new benchmark dataset and classification model on real-world data. In: International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  21. Wu, W., Qi, Z., Fuxin, L.: PointConv: deep convolutional networks on 3D point clouds. In: CVPR (2019)

    Google Scholar 

  22. Wu, Y., He, K.: Group normalization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_1

    Chapter  Google Scholar 

  23. Wu, Z., et al.: 3D shapeNets: a deep representation for volumetric shape modeling. In: Proceedings of 28th IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

Download references

Acknowledgements

This work was partially funded by the Deutsche Forschungsgemeinschaft (DFG) under grant 391088465 (ProLint) and by the Federal Ministry of Health (BMG) under grant ZMVI1-2520DAT200 (AktiSmart-KI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Hermosilla .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 106 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hermosilla, P., Schelling, M., Ritschel, T., Ropinski, T. (2022). Variance-Aware Weight Initialization for Point Convolutional Neural Networks. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13688. Springer, Cham. https://doi.org/10.1007/978-3-031-19815-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19815-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19814-4

  • Online ISBN: 978-3-031-19815-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics