Abstract
The requirement of expensive annotations is a major burden for training a well-performed instance segmentation model. In this paper, we present an economic active learning setting, named active pointly-supervised instance segmentation (APIS), which starts with box-level annotations and iteratively samples a point within the box and asks if it falls on the object. The key of APIS is to find the most desirable points to maximize the segmentation accuracy with limited annotation budgets. We formulate this setting and propose several uncertainty-based sampling strategies. The model developed with these strategies yields consistent performance gain on the challenging MS-COCO dataset, compared against other learning strategies. The results suggest that APIS, integrating the advantages of active learning and point-based supervision, is an effective learning paradigm for label-efficient instance segmentation.
Keywords
- Instance segmentation
- Active learning
- Point-based supervision
- Label-efficient learning
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Agarwal, S., Arora, H., Anand, S., Arora, C.: Contextual diversity for active learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 137–153. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_9
Aghdam, H.H., Gonzalez-Garcia, A., Weijer, J.V.D., López, A.M.: Active learning for deep detection neural networks. In: International Conference on Computer Vision, pp. 3672–3680 (2019)
Arun, A., Jawahar, C.V., Kumar, M.P.: Weakly supervised instance segmentation by learning annotation consistent instances. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12373, pp. 254–270. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58604-1_16
Bearman, A., Russakovsky, O., Ferrari, V., Fei-Fei, L.: What’s the point: semantic segmentation with point supervision. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 549–565. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_34
Beluch, W.H., Genewein, T., Nürnberger, A., Köhler, J.M.: The power of ensembles for active learning in image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 9368–9377 (2018)
Benenson, R., Popov, S., Ferrari, V.: Large-scale interactive object segmentation with human annotators. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 11700–11709 (2019)
Chen, K., et al.: Hybrid task cascade for instance segmentation. In: Conference on Computer Vision and Pattern Recognition, pp. 4974–4983 (2019)
Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R.: Masked-attention mask transformer for universal image segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1290–1299 (2022)
Cheng, B., Parkhi, O., Kirillov, A.: Pointly-supervised instance segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2617–2626 (2022)
Choi, J., Elezi, I., Lee, H.J., Farabet, C., Alvarez, J.M.: Active learning for deep object detection via probabilistic modeling. In: International Conference on Computer Vision (2021)
Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)
Desai, S.V., Balasubramanian, V.N.: Towards fine-grained sampling for active learning in object detection. In: Conference on Computer Vision and Pattern Recognition and Workshops, pp. 924–925 (2020)
Desai, S.V., Chandra, A.L., Guo, W., Ninomiya, S., Balasubramanian, V.N.: An adaptive supervision framework for active learning in object detection. In: British Machine Vision Conference (2019)
Dong, B., Zeng, F., Wang, T., Zhang, X., Wei, Y.: SOLQ: segmenting objects by learning queries. In: Advances in Neural Information Processing Systems (2021)
Fang, Y., et al.: Instances as queries. In: International Conference on Computer Vision, pp. 6910–6919 (2021)
Gal, Y., Islam, R., Ghahramani, Z.: Deep Bayesian active learning with image data. In: International Conference on Machine Learning, pp. 1183–1192 (2017)
Gupta, A., Dollar, P., Girshick, R.: Lvis: a dataset for large vocabulary instance segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5356–5364 (2019)
Hasan, M., Roy-Chowdhury, A.K.: Context aware active learning of activity recognition models. In: International Conference on Computer Vision, pp. 4543–4551 (2015)
Haussmann, E., et al.: Scalable active learning for object detection. In: 2020 IEEE Intelligent Vehicles Symposium (IV), pp. 1430–1435 (2020)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: International Conference on Computer Vision, pp. 2961–2969 (2017)
Hsu, C.C., Hsu, K.J., Tsai, C.C., Lin, Y.Y., Chuang, Y.Y.: Weakly supervised instance segmentation using the bounding box tightness prior. In: Advances in Neural Information Processing Systems, pp. 6586–6597 (2019)
Huang, Z., Huang, L., Gong, Y., Huang, C., Wang, X.: Mask scoring R-CNN. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 6409–6418 (2019)
Jang, W.D., Kim, C.S.: Interactive image segmentation via backpropagating refinement scheme. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5292–5301 (2019)
Joshi, A.J., Porikli, F., Papanikolopoulos, N.: Multi-class active learning for image classification. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2372–2379 (2009)
Kao, C.C., Lee, T.Y., Sen, P., Liu, M.Y.: Localization-aware active learning for object detection. In: Asian Conference on Computer Vision, pp. 506–522 (2018)
Khoreva, A., Benenson, R., Hosang, J., Hein, M., Schiele, B.: Simple does it: weakly supervised instance and semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 876–885 (2017)
Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: Advances in Neural Information Processing Systems (2017)
Lan, S., et al.: Discobox: weakly supervised instance segmentation and semantic correspondence from box supervision. In: International Conference on Computer Vision (2021)
Laradji, I.H., Rostamzadeh, N., Pinheiro, P.O., Vazquez, D., Schmidt, M.: Proposal-based instance segmentation with point supervision. In: IEEE International Conference on Image Processing, pp. 2126–2130 (2020)
Lewis, D.D., Catlett, J.: Heterogeneous uncertainty sampling for supervised learning. In: International Conference on Machine Learning (1994)
Li, Y., et al.: Fully convolutional networks for panoptic segmentation with point-based supervision. arXiv preprint arXiv:2108.07682 (2021)
Li, Z., Chen, Q., Koltun, V.: Interactive image segmentation with latent diversity. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 577–585 (2018)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 8759–8768 (2018)
Liu, Z., Ding, H., Zhong, H., Li, W., Dai, J., He, C.: Influence selection for active learning. In: International Conference on Computer Vision, pp. 9274–9283 (2021)
Maninis, K.K., Caelles, S., Pont-Tuset, J., Van Gool, L.: Deep extreme cut: From extreme points to object segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 616–625 (2018)
Melville, P., Mooney, R.J.: Diverse ensembles for active learning. In: International Conference on Machine Learning (2004)
Papadopoulos, D.P., Uijlings, J.R., Keller, F., Ferrari, V.: Extreme clicking for efficient object annotation. In: International Conference on Computer Vision, pp. 4930–4939 (2017)
Pardo, A., Xu, M., Thabet, A., Arbelaez, P., Ghanem, B.: Baod: budget-aware object detection. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1247–1256 (2021)
Pont-Tuset, J., Arbelaez, P., Barron, J.T., Marques, F., Malik, J.: Multiscale combinatorial grouping for image segmentation and object proposal generation. IEEE Trans. Pattern Anal. Mach. Intell. 39(1), 128–140 (2016)
Qian, R., Wei, Y., Shi, H., Li, J., Liu, J., Huang, T.: Weakly supervised scene parsing with point-based distance metric learning. In: AAAI, pp. 8843–8850 (2019)
Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019)
Roy, S., Unmesh, A., Namboodiri, V.P.: Deep active learning for object detection. In: British Machine Vision Conference (2018)
Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set approach. arXiv preprint arXiv:1708.00489 (2017)
Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mob. Comput. Commun. Rev. 5(1), 3–55 (2001)
Shin, G., Xie, W., Albanie, S.: All you need are a few pixels: Semantic segmentation with pixelpick. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1687–1697 (2021)
Sinha, S., Ebrahimi, S., Darrell, T.: Variational adversarial active learning. In: International Conference on Computer Vision, pp. 5972–5981 (2019)
Tang, C., Chen, H., Li, X., Li, J., Zhang, Z., Hu, X.: Look closer to segment better: Boundary patch refinement for instance segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 13926–13935 (2021)
Tian, Z., Chen, H., Wang, X., Liu, Y., Shen, C.: AdelaiDet: a toolbox for instance-level recognition tasks. https://git.io/adelaidet (2019)
Tian, Z., Shen, C., Chen, H.: Conditional convolutions for instance segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 282–298. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_17
Tian, Z., Shen, C., Wang, X., Chen, H.: Boxinst: high-performance instance segmentation with box annotations. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5443–5452 (2021)
Wang, J., et al.: Semi-supervised active learning for instance segmentation via scoring predictions. In: British Machine Vision Conference (2020)
Wang, K., Zhang, D., Li, Y., Zhang, R., Lin, L.: Cost-effective active learning for deep image classification. IEEE Trans. Circuits Syst. Video Technol. 27(12), 2591–2600 (2016)
Wang, X., Zhang, R., Shen, C., Kong, T., Li, L.: Solo: a simple framework for instance segmentation. IEEE Trans. Pattern Anal. Mach Intell. 4, 8587–8601 (2021)
Wu, T.H., et al.: Redal: region-based and diversity-aware active learning for point cloud semantic segmentation. In: International Conference on Computer Vision, pp. 15510–15519 (2021)
Xu, N., Price, B., Cohen, S., Yang, J., Huang, T.S.: Deep interactive object selection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 373–381 (2016)
Yang, L., Zhang, Y., Chen, J., Zhang, S., Chen, D.Z.: Suggestive annotation: a deep active learning framework for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 399–407 (2017)
Yuan, T., et al.: Multiple instance active learning for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5330–5339 (2021)
Zhang, G., et al.: Refinemask: towards high-quality instance segmentation with fine-grained features. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 6861–6869 (2021)
Zhu, B., et al.: Autoassign: differentiable label assignment for dense object detection. arXiv preprint arXiv:2007.03496 (2020)
Zhu, Y., Zhou, Y., Xu, H., Ye, Q., Doermann, D., Jiao, J.: Learning instance activation maps for weakly supervised instance segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3116–3125 (2019)
Acknowledgment
This work was supported in part by the National Natural Science Foundation of China (Nos. U19B2034, 62061136001 and 61836014).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Tang, C., Xie, L., Zhang, G., Zhang, X., Tian, Q., Hu, X. (2022). Active Pointly-Supervised Instance Segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13688. Springer, Cham. https://doi.org/10.1007/978-3-031-19815-1_35
Download citation
DOI: https://doi.org/10.1007/978-3-031-19815-1_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19814-4
Online ISBN: 978-3-031-19815-1
eBook Packages: Computer ScienceComputer Science (R0)