Skip to main content

Class-Incremental Learning with Cross-Space Clustering and Controlled Transfer

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

In class-incremental learning, the model is expected to learn new classes continually while maintaining knowledge on previous classes. The challenge here lies in preserving the model’s ability to effectively represent prior classes in the feature space, while adapting it to represent incoming new classes. We propose two distillation-based objectives for class incremental learning that leverage the structure of the feature space to maintain accuracy on previous classes, as well as enable learning the new classes. In our first objective, termed cross-space clustering (CSC), we propose to use the feature space structure of the previous model to characterize directions of optimization that maximally preserve the class - directions that all instances of a specific class should collectively optimize towards, and those directions that they should collectively optimize away from. Apart from minimizing forgetting, such a class-level constraint indirectly encourages the model to reliably cluster all instances of a class in the current feature space, and further gives rise to a sense of “herd-immunity”, allowing all samples of a class to jointly combat the model from forgetting the class. Our second objective termed controlled transfer (CT) tackles incremental learning from an important and understudied perspective of inter-class transfer. CT explicitly approximates and conditions the current model on the semantic similarities between incrementally arriving classes and prior classes. This allows the model to learn the incoming classes in such a way that it maximizes positive forward transfer from similar prior classes, thus increasing plasticity, and minimizes negative backward transfer on dissimilar prior classes, whereby strengthening stability. We perform extensive experiments on two benchmark datasets, adding our method (CSCCT) on top of three prominent class-incremental learning methods. We observe consistent performance improvement on a variety of experimental settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note how this is different from a typical indicator function that returns 0 when the inputs are not equal.

  2. 2.

    A batch of sufficient size typically contains at least one sample from each previous class, serving as a rough approximation of the memory.

References

  1. Abati, D., Tomczak, J.M., Blankevoort, T., Calderara, S., Cucchiara, R., Bejnordi, B.E.: Conditional channel gated networks for task-aware continual learning. In: CVPR (2020)

    Google Scholar 

  2. Ahn, H., Kwak, J., Lim, S.F., Bang, H., Kim, H., Moon, T.: SS-IL: separated softmax for incremental learning. In: ICCV (2021)

    Google Scholar 

  3. Ahn, S., Hu, S.X., Damianou, A.C., Lawrence, N.D., Dai, Z.: Variational information distillation for knowledge transfer. In: CVPR (2019)

    Google Scholar 

  4. Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., Tuytelaars, T.: Memory aware synapses: learning what (not) to forget. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 144–161. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_9

    Chapter  Google Scholar 

  5. Aljundi, R., Lin, M., Goujaud, B., Bengio, Y.: Gradient based sample selection for online continual learning. In: NeurIPS (2019)

    Google Scholar 

  6. Belouadah, E., Popescu, A.D.: IL2M: class incremental learning with dual memory. In: ICCV (2019)

    Google Scholar 

  7. Castro, F.M., Marín-Jiménez, M.J., Guil, N., Schmid, C., Alahari, K.: End-to-end incremental learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 241–257. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01258-8_15

    Chapter  Google Scholar 

  8. Cha, H., Lee, J., Shin, J.: Co2L: contrastive continual learning. In: ICCV (2021)

    Google Scholar 

  9. Chaudhry, A., Dokania, P.K., Ajanthan, T., Torr, P.H.S.: Riemannian walk for incremental learning: understanding forgetting and intransigence. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 556–572. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_33

    Chapter  Google Scholar 

  10. Chaudhry, A., Ranzato, M., Rohrbach, M., Elhoseiny, M.: Efficient lifelong learning with a-GEM. In: ICLR (2019)

    Google Scholar 

  11. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  12. Dhar, P., Singh, R.V., Peng, K.C., Wu, Z., Chellappa, R.: Learning without memorizing. In: CVPR (2019)

    Google Scholar 

  13. Douillard, A., Cord, M., Ollion, C., Robert, T., Valle, E.: PODNet: pooled outputs distillation for small-tasks incremental learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 86–102. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_6

    Chapter  Google Scholar 

  14. Farajtabar, M., Azizan, N., Mott, A., Li, A.: Orthogonal gradient descent for continual learning. In: AISTATS (2020)

    Google Scholar 

  15. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: ICML (2017)

    Google Scholar 

  16. French, R.M.: Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 3(4), 128–135 (1999)

    Google Scholar 

  17. Hinton, G.E., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)

  18. Hou, S., Pan, X., Loy, C.C., Wang, Z., Lin, D.: Learning a unified classifier incrementally via rebalancing. In: CVPR (2019)

    Google Scholar 

  19. Huang, Z., Wang, N.: Like what you like: knowledge distill via neuron selectivity transfer. arXiv preprint arXiv:abs/1707.01219 (2017)

  20. Javed, K., White, M.: Meta-learning representations for continual learning. In: NeurIPS (2019)

    Google Scholar 

  21. Joseph, K., Khan, S., Khan, F.S., Anwer, R.M., Balasubramanian, V.N.: Energy-based latent aligner for incremental learning. In: CVPR (2022)

    Google Scholar 

  22. Joseph, K., Khan, S., Khan, F.S., Balasubramanian, V.N.: Towards open world object detection. In: CVPR (2021)

    Google Scholar 

  23. Kim, J., Park, S., Kwak, N.: Paraphrasing complex network: network compression via factor transfer. In: NeurIPS (2018)

    Google Scholar 

  24. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. In: PNAS (2017)

    Google Scholar 

  25. Joseph, K.J., Balasubramanian,V.N.: Meta-consolidation for continual learning. In: NeurIPS (2020)

    Google Scholar 

  26. Kj, J., Rajasegaran, J., Khan, S., Khan, F.S., Balasubramanian, V.N.: Incremental object detection via meta-learning. IEEE TPAMI (2021)

    Google Scholar 

  27. Koratana, A., Kang, D., Bailis, P., Zaharia, M.A.: LIT: learned intermediate representation training for model compression. In: ICML (2019)

    Google Scholar 

  28. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. In: CiteSeer (2009)

    Google Scholar 

  29. Lee, K., Lee, K., Shin, J., Lee, H.: Overcoming catastrophic forgetting with unlabeled data in the wild. arXiv preprint arXiv:1903.12648 (2019)

  30. Li, X., Zhou, Y., Wu, T., Socher, R., Xiong, C.: Learn to grow: a continual structure learning framework for overcoming catastrophic forgetting. In: ICML (2019)

    Google Scholar 

  31. Li, Z., Hoiem, D.: Learning without forgetting. IEEE TPAMI (2018)

    Google Scholar 

  32. Liu, Y., Liu, A., Su, Y., Schiele, B., Sun, Q.: Mnemonics training: multi-class incremental learning without forgetting. In: CVPR (2020)

    Google Scholar 

  33. Lopez-Paz, D., Ranzato, M.: Gradient episodic memory for continual learning. In: NeurIPS (2017)

    Google Scholar 

  34. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. In: JMLR (2008)

    Google Scholar 

  35. Masana, M., Liu, X., Twardowski, B., Menta, M., Bagdanov, A.D., van de Weijer, J.: Class-incremental learning: survey and performance evaluation on image classification. arXiv preprint arXiv:2010.15277 (2021)

  36. Mermillod, M., Bugaiska, A., Bonin, P.: The stability-plasticity dilemma: investigating the continuum from catastrophic forgetting to age-limited learning effects. Front. Psychol. 4, 504 (2013)

    Google Scholar 

  37. Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algorithms. arXiv preprint arXiv:1803.02999 (2018)

  38. Park, W., Kim, D., Lu, Y., Cho, M.: Relational knowledge distillation. In: CVPR (2019)

    Google Scholar 

  39. Peng, B., et al.: Correlation congruence for knowledge distillation. In: ICCV (2019)

    Google Scholar 

  40. Rajasegaran, J., Hayat, M., Khan, S.H., Khan, F.S., Shao, L.: Random path selection for continual learning. In: NeurIPS (2019)

    Google Scholar 

  41. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL: incremental classifier and representation learning. In: CVPR (2017)

    Google Scholar 

  42. Riemer, M., et al.: Learning to learn without forgetting by maximizing transfer and minimizing interference. In: ICLR (2019)

    Google Scholar 

  43. Romero, A., Ballas, N., Kahou, S.E., Chassang, A., Gatta, C., Bengio, Y.: FitNets: hints for thin deep nets. In: ICLR (2015)

    Google Scholar 

  44. Serrà, J., Surís, D., Miron, M., Karatzoglou, A.: Overcoming catastrophic forgetting with hard attention to the task. ICML (2018)

    Google Scholar 

  45. Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative replay. In: NeurIPS (2017)

    Google Scholar 

  46. Simon, C., Koniusz, P., Harandi, M.: On learning the geodesic path for incremental learning. In: CVPR (2021)

    Google Scholar 

  47. Tung, F., Mori, G.: Similarity-preserving knowledge distillation. In: ICCV (2019)

    Google Scholar 

  48. Wang, S., Li, X., Sun, J., Xu, Z.: Training networks in null space of feature covariance for continual learning. In: CVPR (2021)

    Google Scholar 

  49. Wu, Y., et al.: Large scale incremental learning. In: CVPR (2019)

    Google Scholar 

  50. Yan, S., Xie, J., He, X.: DER: dynamically expandable representation for class incremental learning. In: CVPR (2021)

    Google Scholar 

  51. Yim, J., Joo, D., Bae, J.H., Kim, J.: A gift from knowledge distillation: fast optimization, network minimization and transfer learning. In: CVPR (2017)

    Google Scholar 

  52. Yin, H., et al.: Dreaming to distill: data-free knowledge transfer via deepinversion. In: CVPR (2020)

    Google Scholar 

  53. Yoon, J., Yang, E., Lee, J., Hwang, S.J.: Lifelong learning with dynamically expandable networks. In: ICLR (2018)

    Google Scholar 

  54. Zagoruyko, S., Komodakis, N.: Paying more attention to attention: improving the performance of convolutional neural networks via attention transfer. In: ICLR (2017)

    Google Scholar 

  55. Zenke, F., Poole, B., Ganguli, S.: Continual learning through synaptic intelligence. In: ICML (2017)

    Google Scholar 

  56. Zhai, M., Chen, L., Tung, F., He, J., Nawhal, M., Mori, G.: Lifelong GAN: continual learning for conditional image generation. In: ICCV (2019)

    Google Scholar 

Download references

Acknowledgements

We are grateful to the Department of Science and Technology, India, as well as Intel India for the financial support of this project through the IMPRINT program (IMP/2019/000250) as well as the DST ICPS Data Science Cluster program. KJJ thanks TCS for their PhD Fellowship. We also thank the anonymous reviewers and Area Chairs for their valuable feedback in improving the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arjun Ashok .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 193 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ashok, A., Joseph, K.J., Balasubramanian, V.N. (2022). Class-Incremental Learning with Cross-Space Clustering and Controlled Transfer. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13687. Springer, Cham. https://doi.org/10.1007/978-3-031-19812-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19812-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19811-3

  • Online ISBN: 978-3-031-19812-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics