Skip to main content

LoRD: Local 4D Implicit Representation for High-Fidelity Dynamic Human Modeling

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13686))

Included in the following conference series:

Abstract

Recent progress in 4D implicit representation focuses on globally controlling the shape and motion with low dimensional latent vectors, which is prone to missing surface details and accumulating tracking error. While many deep local representations have shown promising results for 3D shape modeling, their 4D counterpart does not exist yet. In this paper, we fill this blank by proposing a novel Local 4D implicit Representation for Dynamic clothed human, named LoRD, which has the merits of both 4D human modeling and local representation, and enables high-fidelity reconstruction with detailed surface deformations, such as clothing wrinkles. Particularly, our key insight is to encourage the network to learn the latent codes of local part-level representation, capable of explaining the local geometry and temporal deformations. To make the inference at test-time, we first estimate the inner body skeleton motion to track local parts at each time step, and then optimize the latent codes for each part via auto-decoding based on different types of observed data. Extensive experiments demonstrate that the proposed method has strong capability for representing 4D human, and outperforms state-of-the-art methods on practical applications, including 4D reconstruction from sparse points, non-rigid depth fusion, both qualitatively and quantitatively.

B. Jiang, X. Ren and X. Xue are with School of Computer Science, Fudan University. Yanwei Fu is with School of Data Science, Fudan University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Representation learning and adversarial generation of 3d point clouds. arXiv preprint arXiv:1707.02392 2(3), 4 (2017)

  2. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis, J.: Scape: shape completion and animation of people. In: ACM SIGGRAPH 2005 Papers, pp. 408–416 (2005)

    Google Scholar 

  3. Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., Taubin, G.: The ball-pivoting algorithm for surface reconstruction. IEEE Trans. Visual Comput. Graphics 5(4), 349–359 (1999)

    Article  Google Scholar 

  4. Bhatnagar, B.L., Sminchisescu, C., Theobalt, C., Pons-Moll, G.: Combining implicit function learning and parametric models for 3D human reconstruction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 311–329. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_19

    Chapter  Google Scholar 

  5. Bozic, A., Palafox, P., Zollhofer, M., Thies, J., Dai, A., Nießner, M.: Neural deformation graphs for globally-consistent non-rigid reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1450–1459 (2021)

    Google Scholar 

  6. Chabra, R., et al.: Deep local shapes: learning local SDF priors for detailed 3D reconstruction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 608–625. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_36

    Chapter  Google Scholar 

  7. ChaoWen, Zhang, Y., Li, Z., Fu, Y.: Pixel2mesh++: Multi-view 3d mesh generation via deformation. In: ICCV (2019)

    Google Scholar 

  8. Chen, X., et al.: gdna: Towards generative detailed neural avatars. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20427–20437 (2022)

    Google Scholar 

  9. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In: CVPR, pp. 5939–5948 (2019)

    Google Scholar 

  10. Chibane, J., Alldieck, T., Pons-Moll, G.: Implicit functions in feature space for 3d shape reconstruction and completion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6970–6981 (2020)

    Google Scholar 

  11. Choi, H., Moon, G., Lee, K.M.: Beyond static features for temporally consistent 3d human pose and shape from a video. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  12. Choy, C.B., Xu, D., Gwak, J.Y., Chen, K., Savarese, S.: 3D-R2N2: A unified approach for single and multi-view 3d object reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 628–644. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_38

    Chapter  Google Scholar 

  13. Crandall, M.G., Lions, P.L.: Viscosity solutions of hamilton-jacobi equations. Trans. Am. Math. Soc. 277(1), 1–42 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. Deng, B., Genova, K., Yazdani, S., Bouaziz, S., Hinton, G., Tagliasacchi, A.: Cvxnet: Learnable convex decomposition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 31–44 (2020)

    Google Scholar 

  15. Deng, B., et al.: NASA neural articulated shape approximation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 612–628. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_36

    Chapter  Google Scholar 

  16. Edelsbrunner, H., Mücke, E.P.: Three-dimensional alpha shapes. ACM Trans. Graph. (TOG) 13(1), 43–72 (1994)

    Article  MATH  Google Scholar 

  17. Erler, P., Guerrero, P., Ohrhallinger, S., Mitra, N.J., Wimmer, M.: Points2Surf learning implicit surfaces from point clouds. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 108–124. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_7

    Chapter  Google Scholar 

  18. Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3d object reconstruction from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 605–613 (2017)

    Google Scholar 

  19. Genova, K., Cole, F., Sud, A., Sarna, A., Funkhouser, T.: Local deep implicit functions for 3d shape. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4857–4866 (2020)

    Google Scholar 

  20. Gillette, R., Peters, C., Vining, N., Edwards, E., Sheffer, A.: Real-time dynamic wrinkling of coarse animated cloth. In: Proceedings of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 17–26 (2015)

    Google Scholar 

  21. Girdhar, R., Fouhey, D.F., Rodriguez, M., Gupta, A.: Learning a predictable and generative vector representation for objects. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 484–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_29

    Chapter  Google Scholar 

  22. Goldenthal, R., Harmon, D., Fattal, R., Bercovier, M., Grinspun, E.: Efficient simulation of inextensible cloth. In: ACM SIGGRAPH 2007 papers, pp. 49-es (2007)

    Google Scholar 

  23. Gropp, A., Yariv, L., Haim, N., Atzmon, M., Lipman, Y.: Implicit geometric regularization for learning shapes. arXiv preprint arXiv:2002.10099 (2020)

  24. Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: Atlasnet: A papier-mâché approach to learning 3d surface generation. arXiv preprint arXiv:1802.05384 (2018)

  25. Guler, R.A., Kokkinos, I.: Holopose: Holistic 3d human reconstruction in-the-wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10884–10894 (2019)

    Google Scholar 

  26. Habermann, M., Xu, W., Zollhoefer, M., Pons-Moll, G., Theobalt, C.: Livecap: Real-time human performance capture from monocular video. ACM Trans. Graph. (TOG) 38(2), 1–17 (2019)

    Article  Google Scholar 

  27. Habermann, M., Xu, W., Zollhofer, M., Pons-Moll, G., Theobalt, C.: Deepcap: Monocular human performance capture using weak supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5052–5063 (2020)

    Google Scholar 

  28. Jiang, B., Zhang, Y., Wei, X., Xue, X., Fu, Y.: Learning compositional representation for 4d captures with neural ode. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5340–5350 (2021)

    Google Scholar 

  29. Jiang, B., Zhang, Y., Wei, X., Xue, X., Fu, Y.: H4d: Human 4d modeling by learning neural compositional representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19355–19365 (2022)

    Google Scholar 

  30. Jiang, C., Sud, A., Makadia, A., Huang, J., Nießner, M., Funkhouser, T.: Local implicit grid representations for 3d scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6001–6010 (2020)

    Google Scholar 

  31. Kanazawa, A., Tulsiani, S., Efros, A.A., Malik, J.: Learning category-specific mesh reconstruction from image collections. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 386–402. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_23

    Chapter  Google Scholar 

  32. Kanazawa, A., Zhang, J.Y., Felsen, P., Malik, J.: Learning 3d human dynamics from video. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5614–5623 (2019)

    Google Scholar 

  33. Kazhdan, M., Hoppe, H.: Screened poisson surface reconstruction. ACM Trans. Graph. (ToG) 32(3), 1–13 (2013)

    Article  MATH  Google Scholar 

  34. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  35. Kocabas, M., Athanasiou, N., Black, M.J.: Vibe: Video inference for human body pose and shape estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5253–5263 (2020)

    Google Scholar 

  36. Lassner, C., Romero, J., Kiefel, M., Bogo, F., Black, M.J., Gehler, P.V.: Unite the people: Closing the loop between 3d and 2d human representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6050–6059 (2017)

    Google Scholar 

  37. Liao, Y., Donne, S., Geiger, A.: Deep marching cubes: Learning explicit surface representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2916–2925 (2018)

    Google Scholar 

  38. Liu, X., Qi, C.R., Guibas, L.J.: Flownet3d: Learning scene flow in 3d point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 529–537 (2019)

    Google Scholar 

  39. Lombardi, S., Simon, T., Schwartz, G., Zollhoefer, M., Sheikh, Y., Saragih, J.: Mixture of volumetric primitives for efficient neural rendering. ACM Trans. Graph. (TOG) 40(4), 1–13 (2021)

    Article  Google Scholar 

  40. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: Smpl: A skinned multi-person linear model. ACM Trans. Graph. (TOG) 34(6), 1–16 (2015)

    Article  Google Scholar 

  41. Lorensen, W.E., Cline, H.E.: Marching cubes: A high resolution 3d surface construction algorithm. ACM Siggraph Comput. Graph. 21(4), 163–169 (1987)

    Article  Google Scholar 

  42. Ma, Q., et al.: Learning to Dress 3D People in Generative Clothing. In: Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  43. Mehta, D., et al.: Single-shot multi-person 3d pose estimation from monocular rgb. In: 2018 International Conference on 3D Vision (3DV), pp. 120–130. IEEE (2018)

    Google Scholar 

  44. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: Learning 3d reconstruction in function space. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4460–4470 (2019)

    Google Scholar 

  45. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: Representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24

    Chapter  Google Scholar 

  46. Newcombe, R.A., Fox, D., Seitz, S.M.: Dynamicfusion: Reconstruction and tracking of non-rigid scenes in real-time. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 343–352 (2015)

    Google Scholar 

  47. Newcombe, R.A., et al.: Kinectfusion: Real-time dense surface mapping and tracking. In: 2011 10th IEEE International Symposium on Mixed and Augmented Reality, pp. 127–136. IEEE (2011)

    Google Scholar 

  48. Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Occupancy flow: 4d reconstruction by learning particle dynamics. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5379–5389 (2019)

    Google Scholar 

  49. Oechsle, M., Mescheder, L., Niemeyer, M., Strauss, T., Geiger, A.: Texture fields: Learning texture representations in function space. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4531–4540 (2019)

    Google Scholar 

  50. Palafox, P., Božič, A., Thies, J., Nießner, M., Dai, A.: Npms: Neural parametric models for 3d deformable shapes. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12695–12705 (2021)

    Google Scholar 

  51. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: Learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 165–174 (2019)

    Google Scholar 

  52. Peng, S., et al.: Neural body: Implicit neural representations with structured latent codes for novel view synthesis of dynamic humans. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9054–9063 (2021)

    Google Scholar 

  53. Peng, S., Niemeyer, M., Mescheder, L., Pollefeys, M., Geiger, A.: Convolutional occupancy networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 523–540. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_31

    Chapter  Google Scholar 

  54. Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-nerf: Neural radiance fields for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10318–10327 (2021)

    Google Scholar 

  55. Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum pointnets for 3d object detection from RGB-D data. In: CVPR (2018)

    Google Scholar 

  56. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d classification and segmentation. In: CVPR (2017)

    Google Scholar 

  57. Rempe, D., Birdal, T., Zhao, Y., Gojcic, Z., Sridhar, S., Guibas, L.J.: Caspr: Learning canonical spatiotemporal point cloud representations. In: Advances in Neural Information Processing Systems, vol. 33 (2020)

    Google Scholar 

  58. Saito, S., Huang, Z., Natsume, R., Morishima, S., Kanazawa, A., Li, H.: Pifu: Pixel-aligned implicit function for high-resolution clothed human digitization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2304–2314 (2019)

    Google Scholar 

  59. Saito, S., Yang, J., Ma, Q., Black, M.J.: Scanimate: Weakly supervised learning of skinned clothed avatar networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2886–2897 (2021)

    Google Scholar 

  60. Selle, A., Su, J., Irving, G., Fedkiw, R.: Robust high-resolution cloth using parallelism, history-based collisions, and accurate friction. IEEE Trans. Visual Comput. Graphics 15(2), 339–350 (2008)

    Article  Google Scholar 

  61. Su, Z., Xu, L., Zheng, Z., Yu, T., Liu, Y., Fang, L.: Robustfusion: Human volumetric capture with data-driven visual cues using a rgbd camera. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 246–264. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_15

    Chapter  Google Scholar 

  62. Sumner, R.W., Schmid, J., Pauly, M.: Embedded deformation for shape manipulation. In: ACM Siggraph 2007 Papers, pp. 80-es (2007)

    Google Scholar 

  63. Takikawa, T., et al.: Neural geometric level of detail: Real-time rendering with implicit 3d shapes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11358–11367 (2021)

    Google Scholar 

  64. Tan, F., et al.: Humangps: Geodesic preserving feature for dense human correspondences. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1820–1830 (2021)

    Google Scholar 

  65. Teed, Z., Deng, J.: RAFT: Recurrent all-pairs field transforms for optical flow. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 402–419. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_24

    Chapter  Google Scholar 

  66. Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive techniques, pp. 205–214 (1987)

    Google Scholar 

  67. Tiwari, G., Sarafianos, N., Tung, T., Pons-Moll, G.: Neural-gif: Neural generalized implicit functions for animating people in clothing. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 11708–11718 (2021)

    Google Scholar 

  68. Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.-G.: Pixel2mesh: Generating 3d mesh models from single rgb images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 55–71. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_4

    Chapter  Google Scholar 

  69. Wang, P.S., Liu, Y., Guo, Y.X., Sun, C.Y., Tong, X.: O-cnn: Octree-based convolutional neural networks for 3d shape analysis. ACM Trans. Graph. (TOG) 36(4), 72 (2017)

    Google Scholar 

  70. Wang, S., Geiger, A., Tang, S.: Locally aware piecewise transformation fields for 3d human mesh registration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7639–7648 (2021)

    Google Scholar 

  71. Wei, L., Huang, Q., Ceylan, D., Vouga, E., Li, H.: Dense human body correspondences using convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1544–1553 (2016)

    Google Scholar 

  72. Wei, X., Chen, Z., Fu, Y., Cui, Z., Zhang, Y.: Deep hybrid self-prior for full 3d mesh generation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5805–5814 (2021)

    Google Scholar 

  73. Xu, W., et al.: Monoperfcap: Human performance capture from monocular video. ACM Trans. Graph. (ToG) 37(2), 1–15 (2018)

    Article  Google Scholar 

  74. Yu, T., et al.: Doublefusion: Real-time capture of human performances with inner body shapes from a single depth sensor. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7287–7296 (2018)

    Google Scholar 

  75. Zheng, Z., Huang, H., Yu, T., Zhang, H., Guo, Y., Liu, Y.: Structured local radiance fields for human avatar modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15893–15903 (2022)

    Google Scholar 

  76. Zheng, Z., et al.: Hybridfusion: Real-time performance capture using a single depth sensor and sparse IMUs. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 389–406. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_24

    Chapter  Google Scholar 

  77. Zheng, Z., Yu, T., Liu, Y., Dai, Q.: Pamir: Parametric model-conditioned implicit representation for image-based human reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 44, 3170–3184 (2021)

    Google Scholar 

Download references

Acknowledgement

This work was supported by Shanghai Municipal Science and Technology Major Projects (No.2018SHZDZX01, and 2021SHZDZX0103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanwei Fu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3849 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, B., Ren, X., Dou, M., Xue, X., Fu, Y., Zhang, Y. (2022). LoRD: Local 4D Implicit Representation for High-Fidelity Dynamic Human Modeling. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13686. Springer, Cham. https://doi.org/10.1007/978-3-031-19809-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19809-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19808-3

  • Online ISBN: 978-3-031-19809-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics