Abstract
Recent studies on learning with noisy labels have shown remarkable performance by exploiting a small clean dataset. In particular, model agnostic meta-learning-based label correction methods further improve performance by correcting noisy labels on the fly. However, there is no safeguard on the label miscorrection, resulting in unavoidable performance degradation. Moreover, every training step requires at least three back-propagations, significantly slowing down the training speed. To mitigate these issues, we propose a robust and efficient method, FasTEN, which learns a label transition matrix on the fly. Employing the transition matrix makes the classifier skeptical about all the corrected samples, which alleviates the miscorrection issue. We also introduce a two-head architecture to efficiently estimate the label transition matrix every iteration within a single back-propagation, so that the estimated matrix closely follows the shifting noise distribution induced by label correction. Extensive experiments demonstrate that our FasTEN shows the best performance in training efficiency while having comparable or better accuracy than existing methods, especially achieving state-of-the-art performance in a real-world noisy dataset, Clothing1M.
Keywords
- Learning with noisy labels
- Label correction
- Transition matrix estimation
S. M. Kye, K.Choi and J.Yi—Equal contribution.
This is a preview of subscription content, access via your institution.
Buying options




References
Arpit, D., et al.: A closer look at memorization in deep networks. In: International Conference on Machine Learning, pp. 233–242. PMLR (2017)
Azadi, S., Feng, J., Jegelka, S., Darrell, T.: Auxiliary image regularization for deep CNNs with noisy labels. arXiv preprint arXiv:1511.07069 (2015)
Bahri, D., Jiang, H., Gupta, M.: Deep k-NN for noisy labels. In: International Conference on Machine Learning, pp. 540–550. PMLR (2020)
Bartlett, P., Foster, D.J., Telgarsky, M.: Spectrally-normalized margin bounds for neural networks. arXiv preprint arXiv:1706.08498 (2017)
Bartlett, P.L., Jordan, M.I., McAuliffe, J.D.: Convexity, classification, and risk bounds. J. Am. Stat. Assoc. 101(473), 138–156 (2006)
Bartlett, P.L., Mendelson, S.: Rademacher and Gaussian complexities: risk bounds and structural results. J. Mach. Learn. Res. 3(Nov), 463–482 (2002)
Bekker, A.J., Goldberger, J.: Training deep neural-networks based on unreliable labels. In: 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2682–2686. IEEE (2016)
Berthon, A., Han, B., Niu, G., Liu, T., Sugiyama, M.: Confidence scores make instance-dependent label-noise learning possible. arXiv preprint arXiv:2001.03772 (2020)
Boucheron, S., Lugosi, G., Massart, P.: Concentration Inequalities: A Nonasymptotic Theory of Independence. Oxford University Press, Oxford (2013)
Cao, K., Chen, Y., Lu, J., Arechiga, N., Gaidon, A., Ma, T.: Heteroskedastic and imbalanced deep learning with adaptive regularization. arXiv preprint arXiv:2006.15766 (2020)
Chang, H.S., Learned-Miller, E., McCallum, A.: Active bias: training more accurate neural networks by emphasizing high variance samples. arXiv preprint arXiv:1704.07433 (2017)
Charikar, M., Steinhardt, J., Valiant, G.: Learning from untrusted data. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 47–60 (2017)
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)
Chen, P., Liao, B.B., Chen, G., Zhang, S.: Understanding and utilizing deep neural networks trained with noisy labels. In: International Conference on Machine Learning, pp. 1062–1070. PMLR (2019)
Chen, P., Ye, J., Chen, G., Zhao, J., Heng, P.A.: Robustness of accuracy metric and its inspirations in learning with noisy labels. arXiv preprint arXiv:2012.04193 (2020)
Cheng, H., Zhu, Z., Li, X., Gong, Y., Sun, X., Liu, Y.: Learning with instance-dependent label noise: a sample sieve approach. In: ICLR (2021)
Cheng, J., Liu, T., Ramamohanarao, K., Tao, D.: Learning with bounded instance and label-dependent label noise. In: International Conference on Machine Learning, pp. 1789–1799. PMLR (2020)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Drory, A., Avidan, S., Giryes, R.: How do neural networks overcome label noise. arXiv Preprint (2018)
Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126–1135. PMLR (2017)
Floridi, L., Chiriatti, M.: GPT-3: its nature, scope, limits, and consequences. Mind. Mach. 30(4), 681–694 (2020)
Ghosh, A., Kumar, H., Sastry, P.: Robust loss functions under label noise for deep neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017)
Ghosh, A., Lan, A.: Do we really need gold samples for sample weighting under label noise? In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3922–3931 (2021)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)
Goldberger, J., Ben-Reuven, E.: Training deep neural-networks using a noise adaptation layer (2016)
Golowich, N., Rakhlin, A., Shamir, O.: Size-independent sample complexity of neural networks. In: Conference On Learning Theory, pp. 297–299. PMLR (2018)
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org
Guan, M., Gulshan, V., Dai, A., Hinton, G.: Who said what: modeling individual labelers improves classification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)
Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: International Conference on Machine Learning, pp. 1321–1330. PMLR (2017)
Guo, J., Gong, M., Liu, T., Zhang, K., Tao, D.: LTF: a label transformation framework for correcting label shift. In: International Conference on Machine Learning, pp. 3843–3853. PMLR (2020)
Han, B., et al.: SIGUA: forgetting may make learning with noisy labels more robust. In: International Conference on Machine Learning, pp. 4006–4016. PMLR (2020)
Han, B., et al.: Masking: a new perspective of noisy supervision. arXiv preprint arXiv:1805.08193 (2018)
Han, B., et al.: Co-teaching: robust training of deep neural networks with extremely noisy labels. arXiv preprint arXiv:1804.06872 (2018)
Han, J., Luo, P., Wang, X.: Deep self-learning from noisy labels. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5138–5147 (2019)
Han, K., Wang, Y., Xu, Y., Xu, C., Wu, E., Xu, C.: Training binary neural networks through learning with noisy supervision. In: International Conference on Machine Learning, pp. 4017–4026. PMLR (2020)
Harutyunyan, H., Reing, K., Ver Steeg, G., Galstyan, A.: Improving generalization by controlling label-noise information in neural network weights. In: International Conference on Machine Learning, pp. 4071–4081. PMLR (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hendrycks, D., Lee, K., Mazeika, M.: Using pre-training can improve model robustness and uncertainty. In: International Conference on Machine Learning, pp. 2712–2721. PMLR (2019)
Hendrycks, D., Mazeika, M., Kadavath, S., Song, D.: Using self-supervised learning can improve model robustness and uncertainty. arXiv preprint arXiv:1906.12340 (2019)
Hendrycks, D., Mazeika, M., Wilson, D., Gimpel, K.: Using trusted data to train deep networks on labels corrupted by severe noise. Adv. Neural Inf. Process. Syst. 31 (2018)
Hong, Y., Han, S., Choi, K., Seo, S., Kim, B., Chang, B.: Disentangling label distribution for long-tailed visual recognition. arXiv preprint arXiv:2012.00321 (2020)
Hu, W., Li, Z., Yu, D.: Simple and effective regularization methods for training on noisily labeled data with generalization guarantee. arXiv preprint arXiv:1905.11368 (2019)
Huang, L., Zhang, C., Zhang, H.: Self-adaptive training: beyond empirical risk minimization. Adv. Neural Inf. Process. Syst. 33 (2020)
Jiang, L., Zhou, Z., Leung, T., Lif, L.J., Fei-Fei, L.: MentorNet: learning data-driven curriculum for very deep neural networks on corrupted labels. In: International Conference on Machine Learning, pp. 2304–2313. PMLR (2018)
Jiang, Z., et al.: An information fusion approach to learning with instance-dependent label noise. In: International Conference on Learning Representations (2022). https://openreview.net/forum?id=ecH2FKaARUp
Jindal, I., Nokleby, M., Chen, X.: Learning deep networks from noisy labels with dropout regularization. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 967–972. IEEE (2016)
Kim, T., Ko, J., Choi, J., Yun, S.Y., et al.: Fine samples for learning with noisy labels. Adv. Neural Inf. Process. Syst. 34 (2021)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)
Lee, K.H., He, X., Zhang, L., Yang, L.: CleanNet: transfer learning for scalable image classifier training with label noise. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5447–5456 (2018)
Li, D., Chen, C., Liu, W., Lu, T., Gu, N., Chu, S.M.: Mixture-rank matrix approximation for collaborative filtering. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 477–485 (2017)
Li, D., Chen, C., Lv, Q., Yan, J., Shang, L., Chu, S.: Low-rank matrix approximation with stability. In: International Conference on Machine Learning, pp. 295–303. PMLR (2016)
Li, J., Socher, R., Hoi, S.C.: DivideMix: learning with noisy labels as semi-supervised learning. arXiv preprint arXiv:2002.07394 (2020)
Li, J., Wong, Y., Zhao, Q., Kankanhalli, M.S.: Learning to learn from noisy labeled data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5051–5059 (2019)
Li, M., Soltanolkotabi, M., Oymak, S.: Gradient descent with early stopping is provably robust to label noise for overparameterized neural networks. In: International Conference on Artificial Intelligence and Statistics, pp. 4313–4324. PMLR (2020)
Li, X., Liu, T., Han, B., Niu, G., Sugiyama, M.: Provably end-to-end label-noise learning without anchor points. In: International Conference on Machine Learning. PMLR (2021)
Lienen, J., Hüllermeier, E.: From label smoothing to label relaxation. In: Proceedings of the 35th AAAI Conference on Artificial Intelligence, AAAI, Online, 2–9 February 2021. AAAI Press (2021)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)
Liu, S., Niles-Weed, J., Razavian, N., Fernandez-Granda, C.: Early-learning regularization prevents memorization of noisy labels. arXiv preprint arXiv:2007.00151 (2020)
Liu, T., Tao, D.: Classification with noisy labels by importance reweighting. IEEE Trans. Pattern Anal. Mach. Intell. 38(3), 447–461 (2015)
Liu, Y., Guo, H.: Peer loss functions: learning from noisy labels without knowing noise rates. In: International Conference on Machine Learning, pp. 6226–6236. PMLR (2020)
Lukasik, M., Bhojanapalli, S., Menon, A., Kumar, S.: Does label smoothing mitigate label noise? In: International Conference on Machine Learning, pp. 6448–6458. PMLR (2020)
Ma, X., Huang, H., Wang, Y., Romano, S., Erfani, S., Bailey, J.: Normalized loss functions for deep learning with noisy labels. In: International Conference on Machine Learning, pp. 6543–6553. PMLR (2020)
Ma, X., Wang, Y., Houle, M.E., Zhou, S., Erfani, S., Xia, S., Wijewickrema, S., Bailey, J.: Dimensionality-driven learning with noisy labels. In: International Conference on Machine Learning. pp. 3355–3364. PMLR (2018)
Menon, A.K., Rawat, A.S., Reddi, S.J., Kumar, S.: Can gradient clipping mitigate label noise? (2020)
Menon, A.K., Van Rooyen, B., Natarajan, N.: Learning from binary labels with instance-dependent corruption. arXiv preprint arXiv:1605.00751 (2016)
Mirzasoleiman, B., Cao, K., Leskovec, J.: Coresets for robust training of deep neural networks against noisy labels. Adv. Neural Inf. Process. Syst. 33 (2020)
Mnih, V., Hinton, G.E.: Learning to label aerial images from noisy data. In: Proceedings of the 29th International Conference on Machine Learning (ICML-12), pp. 567–574 (2012)
Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning. MIT Press, Cambridge (2018)
Montgomery-Smith, S.J.: The distribution of Rademacher sums. Proc. Am. Math. Soc. 109(2), 517–522 (1990)
Natarajan, N., Dhillon, I.S., Ravikumar, P., Tewari, A.: Learning with noisy labels. In: NIPS, vol. 26, pp. 1196–1204 (2013)
Neyshabur, B., Bhojanapalli, S., Srebro, N.: A PAC-Bayesian approach to spectrally-normalized margin bounds for neural networks. arXiv preprint arXiv:1707.09564 (2017)
Nishi, K., Ding, Y., Rich, A., Höllerer, T.: Augmentation strategies for learning with noisy labels. arXiv preprint arXiv:2103.02130 (2021)
Ortego, D., Arazo, E., Albert, P., O’Connor, N.E., McGuinness, K.: Multi-objective interpolation training for robustness to label noise. arXiv preprint arXiv:2012.04462 (2020)
Patrini, G., Nielsen, F., Nock, R., Carioni, M.: Loss factorization, weakly supervised learning and label noise robustness. In: International Conference on Machine Learning, pp. 708–717. PMLR (2016)
Patrini, G., Rozza, A., Krishna Menon, A., Nock, R., Qu, L.: Making deep neural networks robust to label noise: a loss correction approach. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1944–1952 (2017)
Pleiss, G., Zhang, T., Elenberg, E.R., Weinberger, K.Q.: Identifying mislabeled data using the area under the margin ranking. arXiv preprint arXiv:2001.10528 (2020)
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)
Reed, S., Lee, H., Anguelov, D., Szegedy, C., Erhan, D., Rabinovich, A.: Training deep neural networks on noisy labels with bootstrapping. arXiv preprint arXiv:1412.6596 (2014)
Ren, M., Zeng, W., Yang, B., Urtasun, R.: Learning to reweight examples for robust deep learning. In: International Conference on Machine Learning, pp. 4334–4343. PMLR (2018)
Rodrigues, F., Pereira, F.: Deep learning from crowds. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)
Scott, C.: A rate of convergence for mixture proportion estimation, with application to learning from noisy labels. In: Artificial Intelligence and Statistics, pp. 838–846. PMLR (2015)
Scott, C., et al.: Calibrated asymmetric surrogate losses. Electron. J. Stat. 6, 958–992 (2012)
Shrivastava, A., Gupta, A., Girshick, R.: Training region-based object detectors with online hard example mining. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 761–769 (2016)
Shu, J., Xie, Q., Yi, L., Zhao, Q., Zhou, S., Xu, Z., Meng, D.: Meta-weight-net: learning an explicit mapping for sample weighting. arXiv preprint arXiv:1902.07379 (2019)
Song, H., Kim, M., Lee, J.G.: Selfie: refurbishing unclean samples for robust deep learning. In: International Conference on Machine Learning, pp. 5907–5915. PMLR (2019)
Song, H., Kim, M., Park, D., Lee, J.G.: How does early stopping help generalization against label noise? arXiv preprint arXiv:1911.08059 (2019)
Sukhbaatar, S., Bruna, J., Paluri, M., Bourdev, L., Fergus, R.: Training convolutional networks with noisy labels. arXiv preprint arXiv:1406.2080 (2014)
Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: DeepFace: closing the gap to human-level performance in face verification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1708 (2014)
Tanaka, D., Ikami, D., Yamasaki, T., Aizawa, K.: Joint optimization framework for learning with noisy labels. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5552–5560 (2018)
Tanno, R., Saeedi, A., Sankaranarayanan, S., Alexander, D.C., Silberman, N.: Learning from noisy labels by regularized estimation of annotator confusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11244–11253 (2019)
Thekumparampil, K.K., Khetan, A., Lin, Z., Oh, S.: Robustness of conditional GANs to noisy labels. arXiv preprint arXiv:1811.03205 (2018)
Thulasidasan, S., Bhattacharya, T., Bilmes, J., Chennupati, G., Mohd-Yusof, J.: Combating label noise in deep learning using abstention. arXiv preprint arXiv:1905.10964 (2019)
Van Rooyen, B., Menon, A.K., Williamson, R.C.: Learning with symmetric label noise: the importance of being unhinged. arXiv preprint arXiv:1505.07634 (2015)
Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (2013). https://doi.org/10.1007/978-1-4757-3264-1
Vapnik, V.N.: An overview of statistical learning theory. IEEE Trans. Neural Netw. 10(5), 988–999 (1999)
Veit, A., Alldrin, N., Chechik, G., Krasin, I., Gupta, A., Belongie, S.: Learning from noisy large-scale datasets with minimal supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 839–847 (2017)
Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wierstra, D.: Matching networks for one shot learning. arXiv preprint arXiv:1606.04080 (2016)
Wang, Y., Ma, X., Chen, Z., Luo, Y., Yi, J., Bailey, J.: Symmetric cross entropy for robust learning with noisy labels. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 322–330 (2019)
Wang, Y., Kucukelbir, A., Blei, D.M.: Robust probabilistic modeling with Bayesian data reweighting. In: International Conference on Machine Learning, pp. 3646–3655. PMLR (2017)
Wang, Z., Hu, G., Hu, Q.: Training noise-robust deep neural networks via meta-learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4524–4533 (2020)
Wang, Z., Zhu, H., Dong, Z., He, X., Huang, S.L.: Less is better: unweighted data subsampling via influence function. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 6340–6347 (2020)
Wei, J., Zhu, Z., Cheng, H., Liu, T., Niu, G., Liu, Y.: Learning with noisy labels revisited: a study using real-world human annotations. In: ICLR (2022)
Wu, P., Zheng, S., Goswami, M., Metaxas, D., Chen, C.: A topological filter for learning with label noise. arXiv preprint arXiv:2012.04835 (2020)
Wu, Y., Shu, J., Xie, Q., Zhao, Q., Meng, D.: Learning to purify noisy labels via meta soft label corrector. arXiv preprint arXiv:2008.00627 (2020)
Xia, X., et al.: Sample selection with uncertainty of losses for learning with noisy labels. arXiv preprint arXiv:2106.00445 (2021)
Xia, X., et al.: Part-dependent label noise: Towards instance-dependent label noise. Adv. Neural Inf. Process. Syst. 33 (2020)
Xia, X., Liu, T., Wang, N., Han, B., Gong, C., Niu, G., Sugiyama, M.: Are anchor points really indispensable in label-noise learning? arXiv preprint arXiv:1906.00189 (2019)
Xiao, T., Xia, T., Yang, Y., Huang, C., Wang, X.: Learning from massive noisy labeled data for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2691–2699 (2015)
Yang, F., Koyejo, S.: On the consistency of top-k surrogate losses. In: International Conference on Machine Learning, pp. 10727–10735. PMLR (2020)
Yao, J., Wu, H., Zhang, Y., Tsang, I.W., Sun, J.: Safeguarded dynamic label regression for noisy supervision. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 9103–9110 (2019)
Yao, Y., Liu, T., Gong, M., Han, B., Niu, G., Zhang, K.: Instance-dependent label-noise learning under a structural causal model. Adv. Neural Inf. Process. Syst. 34 (2021)
Yao, Y., et al.: Dual t: reducing estimation error for transition matrix in label-noise learning. arXiv preprint arXiv:2006.07805 (2020)
Yi, K., Wu, J.: Probabilistic end-to-end noise correction for learning with noisy labels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7017–7025 (2019)
Yu, X., Liu, T., Gong, M., Tao, D.: Learning with biased complementary labels. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 69–85. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_5
Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530 (2016)
Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)
Zhang, X., Wu, X., Chen, F., Zhao, L., Lu, C.T.: Self-paced robust learning for leveraging clean labels in noisy data. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 6853–6860 (2020)
Zhang, Y., Niu, G., Sugiyama, M.: Learning noise transition matrix from only noisy labels via total variation regularization. In: International Conference on Machine Learning, pp. 12501–12512. PMLR (2021)
Zhang, Z., Sabuncu, M.R.: Generalized cross entropy loss for training deep neural networks with noisy labels. arXiv preprint arXiv:1805.07836 (2018)
Zheng, G., Awadallah, A.H., Dumais, S.: Meta label correction for noisy label learning. In: Proceedings of the 35th AAAI Conference on Artificial Intelligence (2021)
Zheng, S., Wu, P., Goswami, A., Goswami, M., Metaxas, D., Chen, C.: Error-bounded correction of noisy labels. In: International Conference on Machine Learning, pp. 11447–11457. PMLR (2020)
Zhu, Z., Liu, T., Liu, Y.: A second-order approach to learning with instance-dependent label noise. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10113–10123 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kye, S.M., Choi, K., Yi, J., Chang, B. (2022). Learning with Noisy Labels by Efficient Transition Matrix Estimation to Combat Label Miscorrection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13685. Springer, Cham. https://doi.org/10.1007/978-3-031-19806-9_41
Download citation
DOI: https://doi.org/10.1007/978-3-031-19806-9_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19805-2
Online ISBN: 978-3-031-19806-9
eBook Packages: Computer ScienceComputer Science (R0)