Skip to main content

Rotation Regularization Without Rotation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13685))

Included in the following conference series:

  • 1796 Accesses

Abstract

In various visual classification tasks, we enjoy significant performance improvement by deep convolutional neural networks (CNNs). To further boost performance, it is effective to regularize feature representation learning of CNNs such as by considering margin to improve feature distribution across classes. In this paper, we propose a regularization method based on random rotation of feature vectors. Random rotation is derived from cone representation to describe angular margin of a sample. While it induces geometric regularization to randomly rotate vectors by means of rotation matrices, we theoretically formulate the regularization in a statistical form which excludes costly geometric rotation as well as effectively imposes rotation-based regularization on classification in training CNNs. In the experiments on classification tasks, the method is thoroughly evaluated from various aspects, while producing favorable performance compared to the other regularization methods. Codes are available at https://github.com/tk1980/StatRot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For odd d, we apply \((d-1)/2\) with \(\boldsymbol{V}\in \Re ^{d\times d-1}\).

  2. 2.

    ResNet10 produces \(d=512\)-dimensional features for \(C=1000\) ImageNet classes.

References

  1. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv 1607, 06450 (2016)

    Google Scholar 

  2. Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A.: Network dissection: quantifying interpretability of deep visual representations. In: CVPR, pp. 6541–6549 (2017)

    Google Scholar 

  3. Blaser, R., Fryzlewicz, P.: Random rotation ensembles. J. Mach. Learn. Rese. 17(4), 1–26 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Cao, K., Wei, C., Gaidon, A., Arechiga, N., Ma, T.: Learning imbalanced datasets with label-distribution-aware margin loss. In: NeurIPS (2019)

    Google Scholar 

  5. Chen, B., Deng, W., Du, J.: Noisy softmax: improving the generalization ability of DCNN via postponing the early softmax saturation. In: CVPR, pp. 4021–4030 (2017)

    Google Scholar 

  6. Cohen, T.S., Welling, M.: Group equivariant convolutional networks. In: ICML, pp. 2990–2999 (2016)

    Google Scholar 

  7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR, pp. 248–255 (2009)

    Google Scholar 

  8. Deng, J., Guo, J., Niannan, X., Zafeiriou, S.: Arcface: additive angular margin loss for deep face recognition. In: CVPR, pp. 4690–4699 (2019)

    Google Scholar 

  9. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. arXiv. 1708.04552 (2017)

  10. Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. In: Computer Vision and Pattern Recognition Workshop, pp. 178–178 (2004)

    Google Scholar 

  11. Ghiasi, G., Lin, T.Y., Le, Q.V.: Dropblock: a regularization method for convolutional networks. In: NeurIPS, pp. 3917–3924 (2018)

    Google Scholar 

  12. Golub, G.H., Loan, C.F.V.: Matrix Computations, 3rd edn. Johns Hopkins Univ. Press, London (1996)

    Google Scholar 

  13. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  15. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification. arXiv:1703.07737 (2017)

  16. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR, pp. 7132–7141 (2018)

    Google Scholar 

  17. Hu, K., Póczos, B.: Rotationout as a regularization method for neural network. arXiv:1911.07427 (2019)

  18. Huang, G., Sun, Yu., Liu, Z., Sedra, D., Weinberger, K.Q.: Deep networks with stochastic depth. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 646–661. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_39

    Chapter  Google Scholar 

  19. iNatrualist: The inaturalist 2018 competition dataset. https://github.com/visipedia/inat_comp/tree/master/2018 (2018)

  20. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. J. Mach. Learn. Res. 37, 448–456 (2015)

    Google Scholar 

  21. Kang, B., Xie, S., Rohrbach, M., Yan, Z., Gordo, A., Feng, J., Kalantidis, Y.: Decoupling representation and classifier for long-tailed recognition. In: ICLR (2020)

    Google Scholar 

  22. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for fine-grained categorization. In: Workshop on 3D Representation and Recognition, pp. 554–561 (2013)

    Google Scholar 

  23. Krogh, A., Hertz, J.A.: A simple weight decay can improve generalization. In: NeurIPS, pp. 950–957 (1991)

    Google Scholar 

  24. Lenc, K., Vedaldi, A.: Understanding image representations by measuring their equivariance and equivalence. In: CVPR, pp. 991–999 (2015)

    Google Scholar 

  25. Li, X., Chen, S., Hu, X., Yang, J.: Understanding the disharmony between dropout and batch normalization by variance shift. In: CVPR, pp. 2682–2690 (2019)

    Google Scholar 

  26. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: Sphereface: deep hypersphere embedding for face recognition. In: CVPR, pp. 212–220 (2017)

    Google Scholar 

  27. Liu, W., Wen, Y., Yu, Z., Yang, M.: Large-margin softmax loss for convolutional neural networks. In: ICML, pp. 507–516 (2016)

    Google Scholar 

  28. Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., Yu, S.X.: Large-scale long-tailed recognition in an open world. In: CVPR, pp. 2537–2546 (2019)

    Google Scholar 

  29. Luo, H., Gu, Y., Liao, X., Lai, S., Jiang, W.: Bag of tricks and a strong baseline for deep person re-identification. In: CVPR workshop (2019)

    Google Scholar 

  30. Maji, S., Rahtu, E., Kannala, J., Blaschko, M.B., Vedaldi, A.: Fine-grained visual classification of aircraft. arXiv:1306.5151 (2013)

  31. Radosavovic, I., Kosaraju, R.P., Girshick, R., He, K., Dollár, P.: Designing network design spaces. In: CVPR, pp. 10428–10436 (2020)

    Google Scholar 

  32. Ristani, E., Solera, F., Zou, R., Cucchiara, R., Tomasi, C.: Performance measures and a data set for multi-target, multi-camera tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 17–35. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_2

    Chapter  Google Scholar 

  33. Salimans, T., Kingma, D.P.: Weight normalization: a simple reparameterization to accelerate training of deep neural networks. In: NeurIPS (2016)

    Google Scholar 

  34. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout : a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: The missing ingredient for fast stylization. arXiv:1607.08022 (2016)

  36. Wang, H., et al.: Cosface: large margin cosine loss for deep face recognition. In: CVPR, pp. 5265–5274 (2018)

    Google Scholar 

  37. Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S., Perona, P.: Caltech-UCSD Birds 200. Tech. Rep. CNS-TR-2010-001, California Institute of Technology (2010)

    Google Scholar 

  38. Wen, Y., Zhang, K., Li, Z., Qiao, Yu.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31

    Chapter  Google Scholar 

  39. Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: large-scale scene recognition from abbey to zoo. In: CVPR, pp. 3485–3492 (2010)

    Google Scholar 

  40. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: Cutmix: regularization strategy to train strong classifiers with localizable features. In: ICCV, pp. 6023–6032 (2019)

    Google Scholar 

  41. Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-identification: a benchmark. In: ICCV, pp. 1116–1124 (2015)

    Google Scholar 

  42. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1452–1464 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takumi Kobayashi .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 985 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kobayashi, T. (2022). Rotation Regularization Without Rotation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13685. Springer, Cham. https://doi.org/10.1007/978-3-031-19806-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19806-9_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19805-2

  • Online ISBN: 978-3-031-19806-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics