Skip to main content

Few-Shot Class-Incremental Learning from an Open-Set Perspective

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13685))

Included in the following conference series:

Abstract

The continual appearance of new objects in the visual world poses considerable challenges for current deep learning methods in real-world deployments. The challenge of new task learning is often exacerbated by the scarcity of data for the new categories due to rarity or cost. Here we explore the important task of Few-Shot Class-Incremental Learning (FSCIL) and its extreme data scarcity condition of one-shot. An ideal FSCIL model needs to perform well on all classes, regardless of their presentation order or paucity of data. It also needs to be robust to open-set real-world conditions and be easily adapted to the new tasks that always arise in the field. In this paper, we first reevaluate the current task setting and propose a more comprehensive and practical setting for the FSCIL task. Then, inspired by the similarity of the goals for FSCIL and modern face recognition systems, we propose our method—Augmented Angular Loss Incremental Classification or ALICE. In ALICE, instead of the commonly used cross-entropy loss, we propose to use the angular penalty loss to obtain well-clustered features. As the obtained features not only need to be compactly clustered but also diverse enough to maintain generalization for future incremental classes, we further discuss how class augmentation, data augmentation, and data balancing affect classification performance. Experiments on benchmark datasets, including CIFAR100, miniImageNet, and CUB200, demonstrate the improved performance of ALICE over the state-of-the-art FSCIL methods. Code is available at https://github.com/CanPeng123/FSCIL_ALICE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Castro, F.M., Marín-Jiménez, M.J., Guil, N., Schmid, C., Alahari, K.: End-to-end incremental learning. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 233–248 (2018)

    Google Scholar 

  2. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  3. Chen, X., He, K.: Exploring simple siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758 (2021)

    Google Scholar 

  4. Cheraghian, A., Rahman, S., Fang, P., Roy, S.K., Petersson, L., Harandi, M.: Semantic-aware knowledge distillation for few-shot class-incremental learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2534–2543 (2021)

    Google Scholar 

  5. Cheraghian, A., et al.: Synthesized feature based few-shot class-incremental learning on a mixture of subspaces. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8661–8670 (2021)

    Google Scholar 

  6. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2019)

    Google Scholar 

  7. Dong, S., Hong, X., Tao, X., Chang, X., Wei, X., Gong, Y.: Few-shot class-incremental learning via relation knowledge distillation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 1255–1263 (2021)

    Google Scholar 

  8. Goodfellow, I.J., Mirza, M., Xiao, D., Courville, A., Bengio, Y.: An empirical investigation of catastrophic forgetting in gradient-based neural networks. In: Proceedings of International Conference on Learning Representations (2014)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In: NIPS Deep Learning and Representation Learning Workshop (2015)

    Google Scholar 

  11. Hou, S., Pan, X., Loy, C.C., Wang, Z., Lin, D.: Learning a unified classifier incrementally via rebalancing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 831–839 (2019)

    Google Scholar 

  12. Kang, B., Xie, S., Rohrbach, M., Yan, Z., Gordo, A., Feng, J., Kalantidis, Y.: Decoupling representation and classifier for long-tailed recognition. arXiv preprint arXiv:1910.09217 (2019)

  13. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  14. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: Sphereface: deep hypersphere embedding for face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 212–220 (2017)

    Google Scholar 

  15. Mai, Z., Li, R., Kim, H., Sanner, S.: Supervised contrastive replay: revisiting the nearest class mean classifier in online class-incremental continual learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3589–3599 (2021)

    Google Scholar 

  16. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: the sequential learning problem. In: Psychology of Learning and Motivation, vol. 24, pp. 109–165. Elsevier (1989)

    Google Scholar 

  17. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: icarl: incremental classifier and representation learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2001–2010 (2017)

    Google Scholar 

  18. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  19. Tao, X., Hong, X., Chang, X., Dong, S., Wei, X., Gong, Y.: Few-shot class-incremental learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12183–12192 (2020)

    Google Scholar 

  20. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-ucsd birds-200-2011 dataset (2011)

    Google Scholar 

  21. Wang, H., et al.: Cosface: large margin cosine loss for deep face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5265–5274 (2018)

    Google Scholar 

  22. Yu, L., et al.: Semantic drift compensation for class-incremental learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6982–6991 (2020)

    Google Scholar 

  23. Zhang, C., Song, N., Lin, G., Zheng, Y., Pan, P., Xu, Y.: Few-shot incremental learning with continually evolved classifiers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12455–12464 (2021)

    Google Scholar 

  24. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)

  25. Zhao, H., Fu, Y., Kang, M., Tian, Q., Wu, F., Li, X.: Mgsvf: Multi-grained slow vs. fast framework for few-shot class-incremental learning. arXiv preprint arXiv:2006.15524 (2020)

  26. Zhu, F., Cheng, Z., Zhang, X.Y., Liu, C.l.: Class-incremental learning via dual augmentation. Adv. Neural Inf. Process. Syst. 34, 14306–14318 (2021)

    Google Scholar 

  27. Zhu, K., Cao, Y., Zhai, W., Cheng, J., Zha, Z.J.: Self-promoted prototype refinement for few-shot class-incremental learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6801–6810 (2021)

    Google Scholar 

Download references

Acknowledgments

We thank Dr. Yadan Luo and Kaiyu Guo for their help, discussion, and support. This research was funded by the Australian Government through the Australian Research Council and Sullivan Nicolaides Pathology under Linkage Project LP160101797.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Can Peng .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 222 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peng, C., Zhao, K., Wang, T., Li, M., Lovell, B.C. (2022). Few-Shot Class-Incremental Learning from an Open-Set Perspective. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13685. Springer, Cham. https://doi.org/10.1007/978-3-031-19806-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19806-9_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19805-2

  • Online ISBN: 978-3-031-19806-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics