Skip to main content

ScaleNet: Searching for the Model to Scale

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

Recently, community has paid increasing attention on model scaling and contributed to developing a model family with a wide spectrum of scales. Current methods either simply resort to a one-shot NAS manner to construct a non-structural and non-scalable model family or rely on a manual yet fixed scaling strategy to scale an unnecessarily best base model. In this paper, we bridge both two components and propose ScaleNet to jointly search base model and scaling strategy so that the scaled large model can have more promising performance. Concretely, we design a super-supernet to embody models with different spectrum of sizes (e.g., FLOPs). Then, the scaling strategy can be learned interactively with the base model via a Markov chain-based evolution algorithm and generalized to develop even larger models. To obtain a decent super-supernet, we design a hierarchical sampling strategy to enhance its training sufficiency and alleviate the disturbance. Experimental results show our scaled networks enjoy significant performance superiority on various FLOPs, but with at least \(2.53\times \) reduction on search cost. Codes are available at https://github.com/luminolx/ScaleNet.

This work was supported in part by Beijing Natural Science Foundation Project No. Z200002 and in part by National Natural Science Foundation of China (NSFC) No. 61922015, U19B2036, 62225601.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer Science+Business Media LLC, Berlin (2006)

    MATH  Google Scholar 

  2. Bossard, L., Guillaumin, M., Van Gool, L.: Food-101 – mining discriminative components with random forests. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 446–461. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_29

    Chapter  Google Scholar 

  3. Cai, H., Gan, C., Wang, T., Zhang, Z., Han, S.: Once-for-All: train one network and specialize it for efficient deployment. In: ICLR (2020)

    Google Scholar 

  4. Chang, D., Pang, K., Zheng, Y., Ma, Z., Song, Y.Z., Guo, J.: Your “flamingo” is my “bird”: fine-grained, or not. In: CVPR, pp. 11476–11485 (2021)

    Google Scholar 

  5. Cheng, Z., Su, X., Wang, X., You, S., Xu, C.: Sufficient vision transformer. In: KDD (2022)

    Google Scholar 

  6. Dai, X., et al.: FBNetV3: joint architecture-recipe search using predictor pretraining. In: CVPR, pp. 16276–16285 (2021)

    Google Scholar 

  7. Dollar, P., Singh, M., Girshick, R.: Fast and accurate model scaling. In: CVPR, pp. 924–932 (2021)

    Google Scholar 

  8. Du, R., Xie, J., Ma, Z., Chang, D., Song, Y.Z., Guo, J.: Progressive learning of category-consistent multi-granularity features for fine-grained visual classification. IEEE TPAMI (2021)

    Google Scholar 

  9. Guo, Z.: Single path one-shot neural architecture search with uniform sampling. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 544–560. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_32

    Chapter  Google Scholar 

  10. Han, K., Wang, Y., Zhang, Q., Zhang, W., Xu, C., Zhang, T.: Model Rubik’s cube: twisting resolution, depth and width for TinyNets. In: NeurIPS (2020)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  12. Howard, A., et al.: Searching for mobilenetV3. In: ICCV (2019)

    Google Scholar 

  13. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for fine-grained categorization. In: CVPRW, pp. 554–561 (2013)

    Google Scholar 

  14. Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical Report, CIFAR (2009)

    Google Scholar 

  15. Li, S., et al.: Searching for fast model families on datacenter accelerators. In: CVPR, pp. 8085–8095 (2021)

    Google Scholar 

  16. Liu, C., et al.: Greedy network enlarging. ArXiv preprint, arXiv:2108.00177 (2021)

  17. Lou, W., Xun, L., Sabet, A., Bi, J., Hare, J., Merrett, G.V.: Dynamic-OFA: Runtime DNN architecture switching for performance scaling on heterogeneous embedded platforms. In: CVPRW, pp. 3110–3118 (2021)

    Google Scholar 

  18. Maji, S., Rahtu, E., Kannala, J., Blaschko, M., Vedaldi, A.: Fine-grained visual classification of aircraft. ArXiv preprint, arXiv:1306.5151 (2013)

  19. Radosavovic, I., Kosaraju, R.P., Girshick, R., He, K., Dollar, P.: Designing network design spaces. In: CVPR (2020)

    Google Scholar 

  20. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. IJCV 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  21. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: Inverted residuals and linear bottlenecks. In: CVPR (2018)

    Google Scholar 

  22. Su, X., et al.: Prioritized architecture sampling with Monto-Carlo tree search. In: CVPR, pp. 10968–10977 (2021)

    Google Scholar 

  23. Su, X., et al.: Locally free weight sharing for network width search. ArXiv preprint, arXiv:2102.05258 (2021)

  24. Su, X., You, S., Wang, F., Qian, C., Zhang, C., Xu, C.: BCNet: searching for network width with bilaterally coupled network. In: CVPR, pp. 2175–2184 (2021)

    Google Scholar 

  25. Su, X., et al.: ViTAS: vision transformer architecture search. ArXiv preprint, arXiv:2106.13700 (2021)

  26. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, Inception-ResNet and the impact of residual connections on learning. In: AAAI (2017)

    Google Scholar 

  27. Tan, M., et al.: MnasNet: Platform-aware neural architecture search for mobile. In: CVPR (2019)

    Google Scholar 

  28. Tan, M., Le, Q.: EfficientNet: Rethinking model scaling for convolutional neural networks. In: ICML, pp. 6105–6114 (2019)

    Google Scholar 

  29. Tan, M., Le, Q.V.: EfficientNetV2: smaller models and faster training. ArXiv preprint, arXiv:2104.00298 (2021)

  30. Tian, Y., Krishnan, D., Isola, P.: Contrastive multiview coding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 776–794. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_45

    Chapter  Google Scholar 

  31. Wan, A., et al.: FBNetV2: differentiable neural architecture search for spatial and channel dimensions. In: CVPR (2020)

    Google Scholar 

  32. Wang, C., Xu, C., Yao, X., Tao, D.: Evolutionary generative adversarial networks. IEEE Trans. Evol. Comput. 23(6), 921–934 (2019)

    Article  Google Scholar 

  33. Wu, B., et al.: FBNet: hardware-aware efficient ConvNet design via differentiable neural architecture search. In: CVPR (2019)

    Google Scholar 

  34. Xie, J., Ma, Z., Chang, D., Zhang, G., Guo, J.: GPCA: a probabilistic framework for Gaussian process embedded channel attention. IEEE TPAMI (2021)

    Google Scholar 

  35. Xie, J., et al.: Advanced dropout: a model-free methodology for Bayesian dropout optimization. IEEE TPAMI (2021)

    Google Scholar 

  36. Xie, J., et al.: DS-UI: dual-supervised mixture of gaussian mixture models for uncertainty inference in image recognition. IEEE TIP 30, 9208–9219 (2021)

    Google Scholar 

  37. Xu, H., Su, X., Wang, Y., Cai, H., Cui, K., Chen, X.: Automatic bridge crack detection using a convolutional neural network. Appl. Sci. 9(14), 2867 (2019)

    Article  Google Scholar 

  38. Yang, Z., Liu, D., Wang, C., Yang, J., Tao, D.: Modeling image composition for complex scene generation. ArXiv preprint, arXiv:2206.00923 (2022)

  39. You, S., Huang, T., Yang, M., Wang, F., Qian, C., Zhang, C.: GreedyNAS: towards fast one-shot NAS with greedy supernet. In: CVPR (2020)

    Google Scholar 

  40. You, S., Xu, C., Xu, C., Tao, D.: Learning from multiple teacher networks. In: KDD, pp. 1285–1294 (2017)

    Google Scholar 

  41. Yu, J., et al.: BigNAS: scaling up neural architecture search with big single-stage models. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 702–717. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_41

    Chapter  Google Scholar 

  42. Zagoruyko, S., Komodakis, N.: Wide residual networks. ArXiv preprint, arXiv:1605.07146 (2016)

  43. Zhai, X., Kolesnikov, A., Houlsby, N., Beyer, L.: Scaling vision transformers. ArXiv preprint, arXiv:2106.04560 (2021)

  44. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: CVPR (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanyu Ma .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 681 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, J., Su, X., You, S., Ma, Z., Wang, F., Qian, C. (2022). ScaleNet: Searching for the Model to Scale. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13681. Springer, Cham. https://doi.org/10.1007/978-3-031-19803-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19803-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19802-1

  • Online ISBN: 978-3-031-19803-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics