Skip to main content

Accurate Detection of Proteins in Cryo-Electron Tomograms from Sparse Labels

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

Cryo-electron tomography (CET) combined with sub-volume averaging (SVA), is currently the only imaging technique capable of de-termining the structure of proteins imaged inside cells at molecular reso-lution. To obtain high-resolution reconstructions, sub-volumes containing randomly distributed copies of the protein of interest need be identified, extracted and subjected to SVA, making accurate particle detection a critical step in the CET processing pipeline. Classical template-based methods have high false-positive rates due to the very low signal-to-noise ratios (SNR) typical of CET volumes, while more recent neural-network based detection algorithms require extensive labeling, are very slow to train and can take days to run. To address these issues, we propose a novel particle detection framework that uses positive-unlabeled learning and exploits the unique properties of 3D tomograms to improve detec-tion performance. Our end-to-end framework is able to identify particles within minutes when trained using a single partially labeled tomogram. We conducted extensive validation experiments on two challenging CET datasets representing different experimental conditions, and observed more than \(10\%\) improvement in mAP and F1 scores compared to existing particle picking methods used in CET. Ultimately, the proposed framework will facilitate the structural analysis of challenging biomedical targets imaged within the native environment of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://cryolo.readthedocs.io/en/stable/.

References

  1. Al-Azzawi, A., Ouadou, A., Tanner, J.J., Cheng, J.: Autocryopicker: an unsupervised learning approach for fully automated single particle picking in cryo-EM images. BMC Bioinformatics 20(1), 1–26 (2019)

    Article  Google Scholar 

  2. Bendory, T., Bartesaghi, A., Singer, A.: Single-particle cryo-electron microscopy: mathematical theory, computational challenges, and opportunities. IEEE Sig. Process. Mag. 37(2), 58–76 (2020). https://doi.org/10.1109/MSP.2019.2957822

    Article  Google Scholar 

  3. Bepler, T., Morin, A., Noble, A.J., Brasch, J., Shapiro, L., Berger, B.: Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1–8 (2019)

    Article  Google Scholar 

  4. Chaitanya, K., Erdil, E., Karani, N., Konukoglu, E.: Contrastive learning of global and local features for medical image segmentation with limited annotations. arXiv abs/2006.10511 (2020)

    Google Scholar 

  5. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. arXiv abs/2002.05709 (2020)

    Google Scholar 

  6. Chen, W., Liu, B., Peng, S., Sun, J., Qiao, X.: S3D-UNet: separable 3D U-net for brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 358–368. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_32

    Chapter  Google Scholar 

  7. Chuang, C.Y., Robinson, J., Lin, Y.C., Torralba, A., Jegelka, S.: Debiased contrastive learning. arXiv (2020)

    Google Scholar 

  8. Doerr, A.: Cryo-electron tomography. Nat. Methods 14(1), 34–34 (2017). https://doi.org/10.1038/nmeth.4115

    Article  Google Scholar 

  9. Druck, G., Mann, G.S., McCallum, A.: Learning from labeled features using generalized expectation criteria. In: SIGIR’08 (2008)

    Google Scholar 

  10. Eisenstein, F., Danev, R., Pilhofer, M.: Improved applicability and robustness of fast cryo-electron tomography data acquisition. J. Struct. Biol. 208(2), 107–114 (2019). https://doi.org/10.1016/j.jsb.2019.08.006

    Article  Google Scholar 

  11. Gubins, I., et al.: SHREC 2021: Classification in cryo-electron tomograms (2021)

    Google Scholar 

  12. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.B.: Momentum contrast for unsupervised visual representation learning. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9726–9735 (2020)

    Google Scholar 

  13. Huang, Q., Zhou, Y., Liu, H.F., Bartesaghi, A.: Weakly supervised learning for joint image denoising and protein localization in cryo-electron microscopy. In: 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 3260–3269 (2022)

    Google Scholar 

  14. Iudin, A., Korir, P.K., Salavert-Torres, J., Kleywegt, G.J., Patwardhan, A.: EMPIAR: a public archive for raw electron microscopy image data. Nat. Methods 13, 387–388 (2016)

    Article  Google Scholar 

  15. Jin, Q., Meng, Z.P., Sun, C., Wei, L., Su, R.: RA-UNeT: A hybrid deep attention-aware network to extract liver and tumor in CT scans. Front. Bioeng. Biotechnol. 8, 1471 (2020)

    Article  Google Scholar 

  16. Ke, Z., Wang, D., Yan, Q., Ren, J.S.J., Lau, R.W.H.: Dual student: Breaking the limits of the teacher in semi-supervised learning. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6727–6735 (2019)

    Google Scholar 

  17. Khosla, P., et al.: Supervised contrastive learning. arXiv abs/2004.11362 (2020)

    Google Scholar 

  18. Kiryo, R., Niu, G., du Plessis, M.C., Sugiyama, M.: Positive-unlabeled learning with non-negative risk estimator. arXiv (2017)

    Google Scholar 

  19. Law, H., Deng, J.: Cornernet: Detecting objects as paired keypoints. arXiv abs/1808.01244 (2018)

    Google Scholar 

  20. Lin, T.Y., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42, 318–327 (2020)

    Article  Google Scholar 

  21. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  22. Moebel, E., et al.: Deep learning improves macromolecule identification in 3D cellular cryo-electron tomograms. Nat. Methods (2021)

    Google Scholar 

  23. Nguyen, N.P., Ersoy, I., Gotberg, J., et al.: DRPnet: automated particle picking in cryo-electron micrographs using deep regression. BMC Bioinf. 22, 55 (2021). https://doi.org/10.1186/s12859-020-03948-x

    Article  Google Scholar 

  24. du Plessis, M.C., Niu, G., Sugiyama, M.: Analysis of learning from positive and unlabeled data. In: NIPS (2014)

    Google Scholar 

  25. Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016)

    Google Scholar 

  26. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149 (2015)

    Article  Google Scholar 

  27. Sohn, K., Zhang, Z., Li, C.L., Zhang, H., Lee, C.Y., Pfister, T.: A simple semi-supervised learning framework for object detection. arXiv (2020)

    Google Scholar 

  28. Tang, G., et al.: Eman2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157(1), 38–46 (2007)

    Article  Google Scholar 

  29. Tegunov, D., Xue, L., Dienemann, C., Cramer, P., Mahamid, J.: Multi-particle cryo-em refinement with m visualizes ribosome-antibiotic complex at 3.5 å in cells. Nat. Methods 18, 186–193 (2021)

    Article  Google Scholar 

  30. de Teresa, I., et al.: Convolutional networks for supervised mining of molecular patterns within cellular context. bioRxiv (2022)

    Google Scholar 

  31. Tian, Z., Shen, C., Chen, H., He, T.: Fcos: fully convolutional one-stage object detection. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9626–9635 (2019)

    Google Scholar 

  32. Wagner, T., et al.: SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2(1), 218 (2019)

    Article  Google Scholar 

  33. Xu, M., et al.: End-to-end semi-supervised object detection with soft teacher. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3040–3049 (2021)

    Google Scholar 

  34. Zeng, X., Kahng, A., Xue, L., Mahamid, J., Chang, Y.W., Xu, M.: Disca: high-throughput cryo-et structural pattern mining by deep unsupervised clustering. bioRxiv (2021)

    Google Scholar 

  35. Zhao, X., et al.: Contrastive learning for label-efficient semantic segmentation. arXiv abs/2012.06985 (2020)

    Google Scholar 

  36. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv abs/1904.07850 (2019)

    Google Scholar 

Download references

Acknowledgements

This study utilized the computational resources offered by Duke Research Computing (https://rc.duke.edu/). We thank C. Kneifel, K. Kilroy, M. Newton, V. Orlikowski, T. Milledge and D. Lane from the Duke Office of Information Technology and Research Computing for providing assistance with the computing environment. This work was supported by a Visual Proteomics Imaging grant from the Chan Zuckerberg Initiative (CZI) to AB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Bartesaghi .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 622 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, Q., Zhou, Y., Liu, HF., Bartesaghi, A. (2022). Accurate Detection of Proteins in Cryo-Electron Tomograms from Sparse Labels. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13681. Springer, Cham. https://doi.org/10.1007/978-3-031-19803-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19803-8_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19802-1

  • Online ISBN: 978-3-031-19803-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics