Abstract
Cryo-electron tomography (CET) combined with sub-volume averaging (SVA), is currently the only imaging technique capable of de-termining the structure of proteins imaged inside cells at molecular reso-lution. To obtain high-resolution reconstructions, sub-volumes containing randomly distributed copies of the protein of interest need be identified, extracted and subjected to SVA, making accurate particle detection a critical step in the CET processing pipeline. Classical template-based methods have high false-positive rates due to the very low signal-to-noise ratios (SNR) typical of CET volumes, while more recent neural-network based detection algorithms require extensive labeling, are very slow to train and can take days to run. To address these issues, we propose a novel particle detection framework that uses positive-unlabeled learning and exploits the unique properties of 3D tomograms to improve detec-tion performance. Our end-to-end framework is able to identify particles within minutes when trained using a single partially labeled tomogram. We conducted extensive validation experiments on two challenging CET datasets representing different experimental conditions, and observed more than \(10\%\) improvement in mAP and F1 scores compared to existing particle picking methods used in CET. Ultimately, the proposed framework will facilitate the structural analysis of challenging biomedical targets imaged within the native environment of cells.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Al-Azzawi, A., Ouadou, A., Tanner, J.J., Cheng, J.: Autocryopicker: an unsupervised learning approach for fully automated single particle picking in cryo-EM images. BMC Bioinformatics 20(1), 1–26 (2019)
Bendory, T., Bartesaghi, A., Singer, A.: Single-particle cryo-electron microscopy: mathematical theory, computational challenges, and opportunities. IEEE Sig. Process. Mag. 37(2), 58–76 (2020). https://doi.org/10.1109/MSP.2019.2957822
Bepler, T., Morin, A., Noble, A.J., Brasch, J., Shapiro, L., Berger, B.: Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Nat. Methods 16, 1–8 (2019)
Chaitanya, K., Erdil, E., Karani, N., Konukoglu, E.: Contrastive learning of global and local features for medical image segmentation with limited annotations. arXiv abs/2006.10511 (2020)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. arXiv abs/2002.05709 (2020)
Chen, W., Liu, B., Peng, S., Sun, J., Qiao, X.: S3D-UNet: separable 3D U-net for brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 358–368. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_32
Chuang, C.Y., Robinson, J., Lin, Y.C., Torralba, A., Jegelka, S.: Debiased contrastive learning. arXiv (2020)
Doerr, A.: Cryo-electron tomography. Nat. Methods 14(1), 34–34 (2017). https://doi.org/10.1038/nmeth.4115
Druck, G., Mann, G.S., McCallum, A.: Learning from labeled features using generalized expectation criteria. In: SIGIR’08 (2008)
Eisenstein, F., Danev, R., Pilhofer, M.: Improved applicability and robustness of fast cryo-electron tomography data acquisition. J. Struct. Biol. 208(2), 107–114 (2019). https://doi.org/10.1016/j.jsb.2019.08.006
Gubins, I., et al.: SHREC 2021: Classification in cryo-electron tomograms (2021)
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.B.: Momentum contrast for unsupervised visual representation learning. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9726–9735 (2020)
Huang, Q., Zhou, Y., Liu, H.F., Bartesaghi, A.: Weakly supervised learning for joint image denoising and protein localization in cryo-electron microscopy. In: 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 3260–3269 (2022)
Iudin, A., Korir, P.K., Salavert-Torres, J., Kleywegt, G.J., Patwardhan, A.: EMPIAR: a public archive for raw electron microscopy image data. Nat. Methods 13, 387–388 (2016)
Jin, Q., Meng, Z.P., Sun, C., Wei, L., Su, R.: RA-UNeT: A hybrid deep attention-aware network to extract liver and tumor in CT scans. Front. Bioeng. Biotechnol. 8, 1471 (2020)
Ke, Z., Wang, D., Yan, Q., Ren, J.S.J., Lau, R.W.H.: Dual student: Breaking the limits of the teacher in semi-supervised learning. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6727–6735 (2019)
Khosla, P., et al.: Supervised contrastive learning. arXiv abs/2004.11362 (2020)
Kiryo, R., Niu, G., du Plessis, M.C., Sugiyama, M.: Positive-unlabeled learning with non-negative risk estimator. arXiv (2017)
Law, H., Deng, J.: Cornernet: Detecting objects as paired keypoints. arXiv abs/1808.01244 (2018)
Lin, T.Y., Goyal, P., Girshick, R.B., He, K., Dollár, P.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42, 318–327 (2020)
Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Moebel, E., et al.: Deep learning improves macromolecule identification in 3D cellular cryo-electron tomograms. Nat. Methods (2021)
Nguyen, N.P., Ersoy, I., Gotberg, J., et al.: DRPnet: automated particle picking in cryo-electron micrographs using deep regression. BMC Bioinf. 22, 55 (2021). https://doi.org/10.1186/s12859-020-03948-x
du Plessis, M.C., Niu, G., Sugiyama, M.: Analysis of learning from positive and unlabeled data. In: NIPS (2014)
Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016)
Ren, S., He, K., Girshick, R.B., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149 (2015)
Sohn, K., Zhang, Z., Li, C.L., Zhang, H., Lee, C.Y., Pfister, T.: A simple semi-supervised learning framework for object detection. arXiv (2020)
Tang, G., et al.: Eman2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157(1), 38–46 (2007)
Tegunov, D., Xue, L., Dienemann, C., Cramer, P., Mahamid, J.: Multi-particle cryo-em refinement with m visualizes ribosome-antibiotic complex at 3.5 å in cells. Nat. Methods 18, 186–193 (2021)
de Teresa, I., et al.: Convolutional networks for supervised mining of molecular patterns within cellular context. bioRxiv (2022)
Tian, Z., Shen, C., Chen, H., He, T.: Fcos: fully convolutional one-stage object detection. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9626–9635 (2019)
Wagner, T., et al.: SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2(1), 218 (2019)
Xu, M., et al.: End-to-end semi-supervised object detection with soft teacher. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3040–3049 (2021)
Zeng, X., Kahng, A., Xue, L., Mahamid, J., Chang, Y.W., Xu, M.: Disca: high-throughput cryo-et structural pattern mining by deep unsupervised clustering. bioRxiv (2021)
Zhao, X., et al.: Contrastive learning for label-efficient semantic segmentation. arXiv abs/2012.06985 (2020)
Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv abs/1904.07850 (2019)
Acknowledgements
This study utilized the computational resources offered by Duke Research Computing (https://rc.duke.edu/). We thank C. Kneifel, K. Kilroy, M. Newton, V. Orlikowski, T. Milledge and D. Lane from the Duke Office of Information Technology and Research Computing for providing assistance with the computing environment. This work was supported by a Visual Proteomics Imaging grant from the Chan Zuckerberg Initiative (CZI) to AB.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Huang, Q., Zhou, Y., Liu, HF., Bartesaghi, A. (2022). Accurate Detection of Proteins in Cryo-Electron Tomograms from Sparse Labels. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13681. Springer, Cham. https://doi.org/10.1007/978-3-031-19803-8_38
Download citation
DOI: https://doi.org/10.1007/978-3-031-19803-8_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19802-1
Online ISBN: 978-3-031-19803-8
eBook Packages: Computer ScienceComputer Science (R0)