Skip to main content

UniMiSS: Universal Medical Self-supervised Learning via Breaking Dimensionality Barrier

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13681))

Included in the following conference series:

Abstract

Self-supervised learning (SSL) opens up huge opportunities for medical image analysis that is well known for its lack of annotations. However, aggregating massive (unlabeled) 3D medical images like computerized tomography (CT) remains challenging due to its high imaging cost and privacy restrictions. In this paper, we advocate bringing a wealth of 2D images like chest X-rays as compensation for the lack of 3D data, aiming to build a universal medical self-supervised representation learning framework, called UniMiSS. The following problem is how to break the dimensionality barrier, i.e., making it possible to perform SSL with both 2D and 3D images? To achieve this, we design a pyramid U-like medical Transformer (MiT). It is composed of the switchable patch embedding (SPE) module and Transformers. The SPE module adaptively switches to either 2D or 3D patch embedding, depending on the input dimension. The embedded patches are converted into a sequence regardless of their original dimensions. The Transformers model the long-term dependencies in a sequence-to-sequence manner, thus enabling UniMiSS to learn representations from both 2D and 3D images. With the MiT as the backbone, we perform the UniMiSS in a self-distillation manner. We conduct expensive experiments on six 3D/2D medical image analysis tasks, including segmentation and classification. The results show that the proposed UniMiSS achieves promising performance on various downstream tasks, outperforming the ImageNet pre-training and other advanced SSL counterparts substantially. Code is available at https://github.com/YtongXie/UniMiSS-code.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Multi-atlas labeling beyond the cranial vault - workshop and challenge. https://www.synapse.org/#!Synapse:syn3193805/wiki/217789

  2. Tianchi dataset. https://tianchi.aliyun.com/competition/entrance/231601/information?from=oldUrl

  3. Akhloufi, M.A., Chetoui, M.: Chest XR COVID-19 detection. https://cxr-covid19.grand-challenge.org/ (2021). Accessed September 2021

  4. An, P., et al.: CT images in COVID-19. https://doi.org/10.7937/TCIA.2020.GQRY-NC81. The Cancer Imaging Archive (2020)

  5. Armato, S.G., III.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38(2), 915–931 (2011)

    Article  Google Scholar 

  6. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: ECCV, pp. 132–149 (2018)

    Google Scholar 

  7. Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: ICCV (2021)

    Google Scholar 

  8. Chaitanya, K., Erdil, E., Karani, N., Konukoglu, E.: Contrastive learning of global and local features for medical image segmentation with limited annotations. In: NeurIPS, vol. 33 (2020)

    Google Scholar 

  9. Chen, L., Bentley, P., Mori, K., Misawa, K., Fujiwara, M., Rueckert, D.: Self-supervised learning for medical image analysis using image context restoration. Med. Image Anal. 58, 101539 (2019)

    Article  Google Scholar 

  10. Chen, M., et al.: Generative pretraining from pixels. In: ICML, pp. 1691–1703 (2020)

    Google Scholar 

  11. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML (2020)

    Google Scholar 

  12. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020)

  13. Chen*, X., Xie*, S., He, K.: An empirical study of training self-supervised vision transformers. In: ICCV (2021)

    Google Scholar 

  14. Codella, N.C., et al.: Skin lesion analysis toward melanoma detection: a challenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In: ISBI, pp. 168–172. IEEE (2018)

    Google Scholar 

  15. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  16. Dou, Q., Liu, Q., Heng, P.A., Glocker, B.: Unpaired multi-modal segmentation via knowledge distillation. IEEE Trans. Med. Imaging 39(7), 2415–2425 (2020)

    Article  Google Scholar 

  17. Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. In: NeurIPS (2020)

    Google Scholar 

  18. Hatamizadeh, A., et al.: UNETR: transformers for 3D medical image segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 574–584 (2022)

    Google Scholar 

  19. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR, pp. 9729–9738 (2020)

    Google Scholar 

  20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  21. Hjelm, R.D., et al.: Learning deep representations by mutual information estimation and maximization. In: ICLR (2019)

    Google Scholar 

  22. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: NNU-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  23. Jin, L., et al.: Deep-learning-assisted detection and segmentation of rib fractures from CT scans: development and validation of FracNet. EBioMedicine (2020)

    Google Scholar 

  24. Karani, N., Chaitanya, K., Baumgartner, C., Konukoglu, E.: A lifelong learning approach to brain MR segmentation across scanners and protocols. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 476–484. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_54

    Chapter  Google Scholar 

  25. Kavur, A.E., Selver, M.A., Dicle, O., Barış, M., Gezer, N.S.: CHAOS - combined (CT-MR) healthy abdominal organ segmentation challenge data (2019). https://doi.org/10.5281/zenodo.3362844

  26. Larsson, G., Maire, M., Shakhnarovich, G.: Colorization as a proxy task for visual understanding. In: CVPR, pp. 6874–6883 (2017)

    Google Scholar 

  27. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR, pp. 4681–4690 (2017)

    Google Scholar 

  28. Lee, H., Hwang, S.J., Shin, J.: Self-supervised label augmentation via input transformations. In: ICML (2020)

    Google Scholar 

  29. Li, K., Wang, S., Yu, L., Heng, P.A.: Dual-teacher++: exploiting intra-domain and inter-domain knowledge with reliable transfer for cardiac segmentation. IEEE Trans. Med. Imaging 40, 2771–2782 (2020)

    Article  Google Scholar 

  30. Liu, Q., Dou, Q., Yu, L., Heng, P.A.: MS-NET: multi-site network for improving prostate segmentation with heterogeneous MRI data. IEEE Trans. Medical Imaging 39(9), 2713–2724 (2020)

    Article  Google Scholar 

  31. Loshchilov, I., Hutter, F.: Sgdr: Stochastic gradient descent with warm restarts. In: ICLR (2017)

    Google Scholar 

  32. Loshchilov, I., Hutter, F.: Fixing weight decay regularization in Adam (2018)

    Google Scholar 

  33. Misra, I., Maaten, L.v.d.: Self-supervised learning of pretext-invariant representations. In: CVPR, pp. 6707–6717 (2020)

    Google Scholar 

  34. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 69–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_5

    Chapter  Google Scholar 

  35. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  36. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: CVPR, pp. 2536–2544 (2016)

    Google Scholar 

  37. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  38. Setio, A.A.A., et al.: Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the luna16 challenge. Med. Image Anal. 42, 1–13 (2017)

    Article  Google Scholar 

  39. Shiraishi, J., et al.: Development of a digital image database for chest radiographs with and without a lung nodule: receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules Am. J. Roentgenol. 174(1), 71–74 (2000). https://db.jsrt.or.jp/eng.php

  40. Sowrirajan, H., Yang, J., Ng, A.Y., Rajpurkar, P.: MoCo pretraining improves representation and transferability of chest x-ray models. In: MIDL, pp. 728–744. PMLR (2021)

    Google Scholar 

  41. Taleb, A., et al.: 3D self-supervised methods for medical imaging. In: NeurIPS, vol. 33, pp. 18158–18172 (2020)

    Google Scholar 

  42. Tian, Y., Krishnan, D., Isola, P.: Contrastive multiview coding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 776–794. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_45

    Chapter  Google Scholar 

  43. Tsai, E.B., et al.: The RSNA international COVID-19 open radiology database (RICORD). Radiology 299(1), E204–E213 (2021)

    Article  Google Scholar 

  44. Van Ginneken, B., Stegmann, M.B., Loog, M.: Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database. Med. Image Anal. 10(1), 19–40 (2006). https://www.isi.uu.nl/Research/Databases/SCR/index.php

  45. Wang, W., et al.: Pyramid vision transformer: a versatile backbone for dense prediction without convolutions. In: ICCV (2021)

    Google Scholar 

  46. Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: ChestX-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: CVPR, pp. 2097–2106 (2017)

    Google Scholar 

  47. Xie, Y., Zhang, J., Liao, Z., Xia, Y., Shen, C.: PGL: prior-guided local self-supervised learning for 3D medical image segmentation. arXiv preprint arXiv:2011.12640 (2020)

  48. Xie, Y., Zhang, J., Shen, C., Xia, Y.: CoTr: efficiently bridging CNN and transformer for 3D medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 171–180. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_16

    Chapter  Google Scholar 

  49. Xie, Y., Zhang, J., Xia, Y., Shen, C.: A mutual bootstrapping model for automated skin lesion segmentation and classification. IEEE Trans. Med. Imaging 39(7), 2482–2493 (2020)

    Article  Google Scholar 

  50. Zhang, J., et al.: Viral pneumonia screening on chest x-rays using confidence-aware anomaly detection. IEEE Trans. Med. Imaging 40(3), 879–890 (2020)

    Article  Google Scholar 

  51. Zhang, J., Xie, Y., Xia, Y., Shen, C.: DoDNet: learning to segment multi-organ and tumors from multiple partially labeled datasets. In: CVPR, pp. 1195–1204 (2021)

    Google Scholar 

  52. Zhang, R., Isola, P., Efros, A.A.: Split-brain autoencoders: unsupervised learning by cross-channel prediction. In: CVPR, pp. 1058–1067 (2017)

    Google Scholar 

  53. Zhang, Z., Yang, L., Zheng, Y.: Translating and segmenting multimodal medical volumes with cycle-and shape-consistency generative adversarial network. In: CVPR, pp. 9242–9251 (2018)

    Google Scholar 

  54. Zhou, H.Y., Lu, C., Yang, S., Han, X., Yu, Y.: Preservational learning improves self-supervised medical image models by reconstructing diverse contexts. In: ICCV, pp. 3499–3509 (2021)

    Google Scholar 

  55. Zhou, Y., et al.: Prior-aware neural network for partially-supervised multi-organ segmentation. In: ICCV, pp. 10672–10681 (2019)

    Google Scholar 

  56. Zhou, Z., Sodha, V., Pang, J., Gotway, M.B., Liang, J.: Models genesis. Med. Image Anal. 67, 101840 (2021)

    Article  Google Scholar 

  57. Zhu, J., Li, Y., Hu, Y., Ma, K., Zhou, S.K., Zheng, Y.: Rubik’s cube+: a self-supervised feature learning framework for 3D medical image analysis. Med. Image Anal. 64, 101746 (2020)

    Article  Google Scholar 

Download references

Acknowledgement

Jianpeng Zhang and Yong Xia were supported by National Natural Science Foundation of China under Grants 62171377. Qi Wu was funded by ARC DE190100539.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 442 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, Y., Zhang, J., Xia, Y., Wu, Q. (2022). UniMiSS: Universal Medical Self-supervised Learning via Breaking Dimensionality Barrier. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13681. Springer, Cham. https://doi.org/10.1007/978-3-031-19803-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19803-8_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19802-1

  • Online ISBN: 978-3-031-19803-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics