Skip to main content

Med-DANet: Dynamic Architecture Network for Efficient Medical Volumetric Segmentation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

For 3D medical image (e.g. CT and MRI) segmentation, the difficulty of segmenting each slice in a clinical case varies greatly. Previous research on volumetric medical image segmentation in a slice-by-slice manner conventionally use the identical 2D deep neural network to segment all the slices of the same case, ignoring the data heterogeneity among image slices. In this paper, we focus on multi-modal 3D MRI brain tumor segmentation and propose a dynamic architecture network named Med-DANet based on adaptive model selection to achieve effective accuracy and efficiency trade-off. For each slice of the input 3D MRI volume, our proposed method learns a slice-specific decision by the Decision Network to dynamically select a suitable model from the predefined Model Bank for the subsequent 2D segmentation task. Extensive experimental results on both BraTS 2019 and 2020 datasets show that our proposed method achieves comparable or better results than previous state-of-the-art methods for 3D MRI brain tumor segmentation with much less model complexity. Compared with the state-of-the-art 3D method TransBTS, the proposed framework improves the model efficiency by up to 3.5\(\times \) without sacrificing the accuracy. Our code will be publicly available at https://github.com/Wenxuan-1119/Med-DANet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 170117 (2017)

    Article  Google Scholar 

  2. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv preprint arXiv:1811.02629 (2018)

  3. Cao, H., et al.: Swin-Unet: Unet-like pure transformer for medical image segmentation. arXiv preprint arXiv:2105.05537 (2021)

  4. Chen, C., Liu, X., Ding, M., Zheng, J., Li, J.: 3D dilated multi-fiber network for real-time brain tumor segmentation in MRI. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 184–192. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_21

    Chapter  Google Scholar 

  5. Chen, J., et al.: TransUNet: transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)

  6. Chen, M., Wu, Y., Wu, J.: Aggregating multi-scale prediction based on 3D U-Net in brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 142–152. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_14

    Chapter  Google Scholar 

  7. Chen, W., Liu, B., Peng, S., Sun, J., Qiao, X.: S3D-UNet: separable 3D U-Net for brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 358–368. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_32

    Chapter  Google Scholar 

  8. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  9. Frey, M., Nau, M.: Memory efficient brain tumor segmentation using an autoencoder-regularized U-Net. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 388–396. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_37

    Chapter  Google Scholar 

  10. Ghaffari, M., Sowmya, A., Oliver, R.: Brain tumour segmentation using cascaded 3D densely-connected u-net. arXiv preprint arXiv:2009.07563 (2020)

  11. He, J., Deng, Z., Qiao, Y.: Dynamic multi-scale filters for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3562–3572 (2019)

    Google Scholar 

  12. Huo, Y., et al.: Robust multicontrast MRI spleen segmentation for splenomegaly using multi-atlas segmentation. IEEE Trans. Biomed. Eng. 65(2), 336–343 (2017)

    Article  Google Scholar 

  13. Kong, S., Fowlkes, C.: Pixel-wise attentional gating for scene parsing. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1024–1033. IEEE (2019)

    Google Scholar 

  14. Li, X., Luo, G., Wang, K.: Multi-step cascaded networks for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 163–173. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_16

    Chapter  Google Scholar 

  15. Li, Y., et al.: Learning dynamic routing for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8553–8562 (2020)

    Google Scholar 

  16. Li, Z., Pan, J., Wu, H., Wen, Z., Qin, J.: Memory-efficient automatic kidney and tumor segmentation based on non-local context guided 3D U-Net. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 197–206. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_20

    Chapter  Google Scholar 

  17. Liu, C., et al.: Brain tumor segmentation network using attention-based fusion and spatial relationship constraint. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12658, pp. 219–229. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72084-1_20

    Chapter  Google Scholar 

  18. Luo, Z., Jia, Z., Yuan, Z., Peng, J.: HDC-Net: hierarchical decoupled convolution network for brain tumor segmentation. IEEE J. Biomed. Health Inform. 25(3), 737–745 (2020)

    Article  Google Scholar 

  19. Ma, N., Zhang, X., Zheng, H.T., Sun, J.: Shufflenet v2: practical guidelines for efficient CNN architecture design. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 116–131 (2018)

    Google Scholar 

  20. Mehta, S., Rastegari, M., Caspi, A., Shapiro, L., Hajishirzi, H.: ESPNet: efficient spatial pyramid of dilated convolutions for semantic segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 552–568 (2018)

    Google Scholar 

  21. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  22. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  23. Nuechterlein, N., Mehta, S.: 3D-ESPNet with pyramidal refinement for volumetric brain tumor image segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 245–253. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_22

    Chapter  Google Scholar 

  24. Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  25. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  26. Qin, D., et al.: Efficient medical image segmentation based on knowledge distillation. IEEE Trans. Med. Imaging 40(12), 3820–3831 (2021)

    Article  Google Scholar 

  27. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  28. Vu, M.H., Nyholm, T., Löfstedt, T.: Multi-decoder networks with multi-denoising inputs for tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12658, pp. 412–423. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72084-1_37

    Chapter  Google Scholar 

  29. Wang, F., Jiang, R., Zheng, L., Meng, C., Biswal, B.: 3D U-Net based brain tumor segmentation and survival days prediction. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 131–141. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_13

    Chapter  Google Scholar 

  30. Wang, W., Chen, C., Ding, M., Yu, H., Zha, S., Li, J.: TransBTS: multimodal brain tumor segmentation using transformer. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 109–119. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_11

    Chapter  Google Scholar 

  31. Wang, Y., Huang, R., Song, S., Huang, Z., Huang, G.: Not all images are worth 16x16 words: dynamic vision transformers with adaptive sequence length. arXiv e-prints pp. arXiv-2105 (2021)

    Google Scholar 

  32. Yang, L., Han, Y., Chen, X., Song, S., Dai, J., Huang, G.: Resolution adaptive networks for efficient inference. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2369–2378 (2020)

    Google Scholar 

  33. Yang, T., Zhu, S., Chen, C., Yan, S., Zhang, M., Willis, A.: MutualNet: adaptive ConvNet via mutual learning from network width and resolution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 299–315. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_18

    Chapter  Google Scholar 

  34. Yang, T., et al.: Mutualnet: adaptive convnet via mutual learning from different model configurations. IEEE Trans. Pattern Anal. Mach. Intell. (2021)

    Google Scholar 

  35. Yu, J., Yang, L., Xu, N., Yang, J., Huang, T.: Slimmable neural networks. arXiv preprint arXiv:1812.08928 (2018)

  36. Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual U-Net. IEEE Geosci. Remote Sens. Lett. 15(5), 749–753 (2018)

    Article  Google Scholar 

  37. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

  38. Zhu, M., et al.: Dynamic resolution network. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Fundamental Research Funds for the China Central Universities of USTB (FRF-DF-19-002), Scientific and Technological Innovation Foundation of Shunde Graduate School, USTB (BK20BE014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangyun Li .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 12098 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, W., Chen, C., Wang, J., Zha, S., Zhang, Y., Li, J. (2022). Med-DANet: Dynamic Architecture Network for Efficient Medical Volumetric Segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13681. Springer, Cham. https://doi.org/10.1007/978-3-031-19803-8_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19803-8_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19802-1

  • Online ISBN: 978-3-031-19803-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics