Skip to main content

Auto-FedRL: Federated Hyperparameter Optimization for Multi-institutional Medical Image Segmentation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)


Federated learning (FL) is a distributed machine learning technique that enables collaborative model training while avoiding explicit data sharing. The inherent privacy-preserving property of FL algorithms makes them especially attractive to the medical field. However, in case of heterogeneous client data distributions, standard FL methods are unstable and require intensive hyperparameter tuning to achieve optimal performance. Conventional hyperparameter optimization algorithms are impractical in real-world FL applications as they involve numerous training trials, which are often not affordable with limited compute budgets. In this work, we propose an efficient reinforcement learning (RL)-based federated hyperparameter optimization algorithm, termed Auto-FedRL, in which an online RL agent can dynamically adjust hyperparameters of each client based on the current training progress. Extensive experiments are conducted to investigate different search strategies and RL agents. The effectiveness of the proposed method is validated on a heterogeneous data split of the CIFAR-10 dataset as well as two real-world medical image segmentation datasets for COVID-19 lesion segmentation in chest CT and pancreas segmentation in abdominal CT.

P. Guo—Work done during an internship at NVIDIA. NVFlare [39] implementation of this work is available at

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. 1.


  1. Abdallah, S., Kaisers, M.: Addressing environment non-stationarity by repeating q-learning updates. J. Mach. Learn. Res. 17(1), 1582–1612 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Acar, D.A.E., Zhao, Y., Matas, R., Mattina, M., Whatmough, P., Saligrama, V.: Federated learning based on dynamic regularization. In: International Conference on Learning Representations (2020)

    Google Scholar 

  3. Andrychowicz, M., et al.: Learning to learn by gradient descent by gradient descent. In: Advances in Neural Information Processing Systems, pp. 3981–3989 (2016)

    Google Scholar 

  4. Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures using reinforcement learning. arXiv preprint arXiv:1611.02167 (2016)

  5. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization. Adv. Neural Inf. Process. Syst. 24, 1–9 (2011)

    Google Scholar 

  6. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(2) (2012)

    Google Scholar 

  7. Chen, X., Chen, T., Sun, H., Wu, Z.S., Hong, M.: Distributed training with heterogeneous data: Bridging median-and mean-based algorithms. arXiv preprint arXiv:1906.01736 (2019)

  8. Chen, X., Xie, L., Wu, J., Tian, Q.: Progressive differentiable architecture search: Bridging the depth gap between search and evaluation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1294–1303 (2019)

    Google Scholar 

  9. Chopra, A., et al.: Adasplit: adaptive trade-offs for resource-constrained distributed deep learning. arXiv preprint arXiv:2112.01637 (2021)

  10. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016).

    Chapter  Google Scholar 

  11. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment: learning augmentation policies from data. arXiv preprint arXiv:1805.09501 (2018)

  12. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: practical automated data augmentation with a reduced search space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 702–703 (2020)

    Google Scholar 

  13. Geiping, J., Bauermeister, H., Dröge, H., Moeller, M.: Inverting gradients-how easy is it to break privacy in federated learning? arXiv preprint arXiv:2003.14053 (2020)

  14. Guo, P., et al.: Learning-based analysis of amide proton transfer-weighted MRI to identify tumor progression in patients with post-treatment malignant gliomas. Available at SSRN 4049653

    Google Scholar 

  15. Guo, P., Wang, P., Zhou, J., Jiang, S., Patel, V.M.: Multi-institutional collaborations for improving deep learning-based magnetic resonance image reconstruction using federated learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2423–2432 (2021)

    Google Scholar 

  16. Harmon, S.A., Sanford, T.H., Xu, S., Turkbey, E.B., Roth, H., Xu, Z., Yang, D., Myronenko, A., Anderson, V., Amalou, A., et al.: Artificial intelligence for the detection of covid-19 pneumonia on chest ct using multinational datasets. Nat. Commun. 11(1), 1–7 (2020)

    Article  Google Scholar 

  17. Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., Meger, D.: Deep reinforcement learning that matters. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  18. Hutter, F., Hoos, H., Leyton-Brown, K.: An efficient approach for assessing hyperparameter importance. In: Proceedings of the 31st International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 32, pp. 754–762. PMLR (2014)

    Google Scholar 

  19. Jaakkola, T., Singh, S.P., Jordan, M.I.: Reinforcement learning algorithm for partially observable markov decision problems. Adv. Neural Inf. Process. Syst. 7, 345–352 (1995)

    Google Scholar 

  20. Kairouz, P., et al.: Advances and open problems in federated learning. arXiv preprint arXiv:1912.04977 (2019)

  21. Kaissis, G., et al.: End-to-end privacy preserving deep learning on multi-institutional medical imaging. Nat. Mach. Intell. 3(6), 473–484 (2021)

    Article  Google Scholar 

  22. Kaissis, G.A., Makowski, M.R., Rückert, D., Braren, R.F.: Secure, privacy-preserving and federated machine learning in medical imaging. Nat. Mach. Intell. 2(6), 305–311 (2020)

    Article  Google Scholar 

  23. Karimireddy, S.P., Kale, S., Mohri, M., Reddi, S., Stich, S., Suresh, A.T.: Scaffold: stochastic controlled averaging for federated learning. In: International Conference on Machine Learning, pp. 5132–5143. PMLR (2020)

    Google Scholar 

  24. Khodak, M., et al.: Federated hyperparameter tuning: challenges, baselines, and connections to weight-sharing. Adv. Neural Inf. Process. Syst. 34, 19184–19197 (2021)

    Google Scholar 

  25. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  26. Li, T., Hu, S., Beirami, A., Smith, V.: Ditto: fair and robust federated learning through personalization. In: International Conference on Machine Learning, pp. 6357–6368. PMLR (2021)

    Google Scholar 

  27. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. arXiv preprint arXiv:1812.06127 (2018)

  28. Li, T., Sanjabi, M., Beirami, A., Smith, V.: Fair resource allocation in federated learning. arXiv preprint arXiv:1905.10497 (2019)

  29. Li, X., Huang, K., Yang, W., Wang, S., Zhang, Z.: On the convergence of fedavg on non-iid data. In: International Conference on Learning Representations (2020).

  30. Li, X., Gu, Y., Dvornek, N., Staib, L.H., Ventola, P., Duncan, J.S.: Multi-site fmri analysis using privacy-preserving federated learning and domain adaptation: Abide results. Med. Image Anal. 65, 101765 (2020)

    Article  Google Scholar 

  31. Li, X., Jiang, M., Zhang, X., Kamp, M., Dou, Q.: Fedbn: Federated learning on non-iid features via local batch normalization. arXiv preprint arXiv:2102.07623 (2021)

  32. Liu, H., Simonyan, K., Yang, Y.: Darts: differentiable architecture search. arXiv preprint arXiv:1806.09055 (2018)

  33. Lyu, L., Xu, X., Wang, Q., Yu, H.: Collaborative fairness in federated learning. In: Yang, Q., Fan, L., Yu, H. (eds.) Federated Learning. LNCS (LNAI), vol. 12500, pp. 189–204. Springer, Cham (2020).

    Chapter  Google Scholar 

  34. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  35. Mei, Y., Guo, P., Patel, V.M.: Escaping data scarcity for high-resolution heterogeneous face hallucination. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18676–18686 (2022)

    Google Scholar 

  36. Michieli, U., Ozay, M.: Are all users treated fairly in federated learning systems? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2318–2322 (2021)

    Google Scholar 

  37. Mohri, M., Sivek, G., Suresh, A.T.: Agnostic federated learning. In: International Conference on Machine Learning, pp. 4615–4625. PMLR (2019)

    Google Scholar 

  38. Mostafa, H.: Robust federated learning through representation matching and adaptive hyper-parameters. arXiv preprint arXiv:1912.13075 (2019)

  39. Nvidia Corporation: Nvidia FLARE (2022).,

  40. Padakandla, S., K. J., P., Bhatnagar, S.: Reinforcement learning algorithm for non-stationary environments. Appl. Intell. 50(11), 3590–3606 (2020).

    Article  Google Scholar 

  41. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4780–4789 (2019)

    Google Scholar 

  42. Reddi, S., et al.: Adaptive federated optimization. arXiv preprint arXiv:2003.00295 (2020)

  43. Rieke, N., et al.: The future of digital health with federated learning. NPJ Dig. Med. 3(1), 1–7 (2020)

    Google Scholar 

  44. Roth, H.R., et al.: Federated learning for breast density classification: a real-world implementation. In: Albarqouni, S., et al. (eds.) DART/DCL -2020. LNCS, vol. 12444, pp. 181–191. Springer, Cham (2020).

    Chapter  Google Scholar 

  45. Roth, H.R., et al.: DeepOrgan: multi-level deep convolutional networks for automated pancreas segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 556–564. Springer, Cham (2015).

    Chapter  Google Scholar 

  46. Roth, H.R., et al.: Rapid artificial intelligence solutions in a pandemic-the covid-19-20 lung ct lesion segmentation challenge. Research Square (2021)

    Google Scholar 

  47. Ruvolo, P., Fasel, I., Movellan, J.: Optimization on a budget: a reinforcement learning approach. Adv. Neural Inf. Process. Syst. 21, 1–8 (2008)

    Google Scholar 

  48. Sattler, F., Wiedemann, S., Müller, K.R., Samek, W.: Robust and communication-efficient federated learning from non-iid data. IEEE Trans. Neural Netw. Learn. Syst. 31(9), 3400–3413 (2019)

    Article  Google Scholar 

  49. Shaw, W.T.: Sampling student’s t distribution-use of the inverse cumulative distribution function. J. Comput. Finan. 9(4), 37 (2006)

    Article  Google Scholar 

  50. Sheller, M.J., et al.: Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Sci. Rep. 10(1), 1–12 (2020)

    Article  Google Scholar 

  51. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  52. Simpson, A.L., et al.: A large annotated medical image dataset for the development and evaluation of segmentation algorithms. arXiv preprint arXiv:1902.09063 (2019)

  53. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. Adv. Neural Inf. Process. Syst. 25, 1–9 (2012)

    MATH  Google Scholar 

  54. Taylor, M.E., Stone, P.: Transfer learning for reinforcement learning domains: a survey. J. Mach. Learn. Res. 10(7) (2009)

    Google Scholar 

  55. Thistleton, W.J., Marsh, J.A., Nelson, K., Tsallis, C.: Generalized box-müller method for generating \( q \)-gaussian random deviates. IEEE Trans. Inf. Theory 53(12), 4805–4810 (2007)

    Article  MATH  Google Scholar 

  56. Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D., Khazaeni, Y.: Federated learning with matched averaging. arXiv preprint arXiv:2002.06440 (2020)

  57. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8(3), 229–256 (1992)

    Article  MATH  Google Scholar 

  58. Wu, J., Chen, X.Y., Zhang, H., Xiong, L.D., Lei, H., Deng, S.H.: Hyperparameter optimization for machine learning models based on bayesian optimization. J. Electron. Sci. Technol. 17(1), 26–40 (2019)

    Google Scholar 

  59. Xia, Y., et al.: Auto-fedavg: learnable federated averaging for multi-institutional medical image segmentation. arXiv preprint arXiv:2104.10195 (2021)

  60. Xie, L., Yuille, A.: Genetic cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1379–1388 (2017)

    Google Scholar 

  61. Xu, A., et al.: Closing the generalization gap of cross-silo federated medical image segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20866–20875 (2022)

    Google Scholar 

  62. Yang, D.: Federated semi-supervised learning for covid region segmentation in chest ct using multi-national data from china, italy, japan. Med. Image Anal. 70, 101992 (2021)

    Article  Google Scholar 

  63. Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM Trans. Intell. Syst. Technol. (TIST) 10(2), 1–19 (2019)

    Article  Google Scholar 

  64. Yu, H., et al.: A fairness-aware incentive scheme for federated learning. In: Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, pp. 393–399 (2020)

    Google Scholar 

  65. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning with non-iid data. arXiv preprint arXiv:1806.00582 (2018)

  66. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv preprint arXiv:1611.01578 (2016)

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Pengfei Guo .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1012 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, P. et al. (2022). Auto-FedRL: Federated Hyperparameter Optimization for Multi-institutional Medical Image Segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13681. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19802-1

  • Online ISBN: 978-3-031-19803-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics