Abstract
Detecting mass in mammogram is significant due to the high occurrence and mortality of breast cancer. In mammogram mass detection, modeling pairwise lesion correspondence explicitly is particularly important. However, most of the existing methods build relatively coarse correspondence and have not utilized correspondence supervision. In this paper, we propose a new transformer-based framework CL-Net to learn lesion detection and pairwise correspondence in an end-to-end manner. In CL-Net, View-Interactive Lesion Detector is proposed to achieve dynamic interaction across candidates of cross views, while Lesion Linker employs the correspondence supervision to guide the interaction process more accurately. The combination of these two designs accomplishes precise understanding of pairwise lesion correspondence for mammograms. Experiments show that CL-Net yields state-of-the-art performance on the public DDSM dataset and our in-house dataset. Moreover, it outperforms previous methods by a large margin in low FPI regime.
Z. Zhao and D. Wang—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agarwal, R., Diaz, O., Lladó, X., Yap, M.H., Martí, R.: Automatic mass detection in mammograms using deep convolutional neural networks. J. Med. Imaging 6(3), 031409 (2019)
Brachmann, E., Rother, C.: Neural-guided RanSAC: learning where to sample model hypotheses. In: ICCV (2019)
Campanini, R., et al.: A novel featureless approach to mass detection in digital mammograms based on support vector machines. Phys. Med. Biol. 49(6), 961 (2004)
Cao, Z., et al.: DeepLima: deep learning based lesion identification in mammograms. In: ICCV Workshops (2019)
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Chen, M., Liao, Y., Liu, S., Chen, Z., Wang, F., Qian, C.: Reformulating hoi detection as adaptive set prediction. In: CVPR (2021)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR (2009)
DeTone, D., Malisiewicz, T., Rabinovich, A.: Superpoint: self-supervised interest point detection and description. In: CVPR Workshops (2018)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Dusmanu, M., Rocco, I., Pajdla, T., Pollefeys, M., Sivic, J., Torii, A., Sattler, T.: D2-net: a trainable CNN for joint detection and description of local features. arXiv preprint arXiv:1905.03561 (2019)
Eltonsy, N.H., Tourassi, G.D., Elmaghraby, A.S.: A concentric morphology model for the detection of masses in mammography. IEEE Trans. Med. Imaging 26(6), 880–889 (2007)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
Heath, M., Bowyer, K., Kopans, D., Moore, R., Kegelmeyer, W.P.: The digital database for screening mammography. In: Proceedings of the 5th International Workshop on Digital Mammography, pp. 212–218. Medical Physics Publishing (2000)
Hu, H., Gu, J., Zhang, Z., Dai, J., Wei, Y.: Relation networks for object detection. In: CVPR (2018)
Kim, B., Lee, J., Kang, J., Kim, E.S., Kim, H.J.: HOTR: end-to-end human-object interaction detection with transformers. In: CVPR (2021)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV (2017)
Liu, Y., Zhang, F., Zhang, Q., Wang, S., Wang, Y., Yu, Y.: Cross-view correspondence reasoning based on bipartite graph convolutional network for mammogram mass detection. In: CVPR (2020)
Liu, Y., et al.: Compare and contrast: detecting mammographic soft-tissue lesions with c2-net. Med. Image Anal. 71, 101999 (2021)
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)
Ma, J., et al.: Cross-view relation networks for mammogram mass detection. In: ICPR (2020)
Mudigonda, N.R., Rangayyan, R.M., Desautels, J.L.: Detection of breast masses in mammograms by density slicing and texture flow-field analysis. IEEE Trans. Med. Imaging 20(12), 1215–1227 (2001)
Ono, Y., Trulls, E., Fua, P., Yi, K.M.: LF-net: learning local features from images. arXiv preprint arXiv:1805.09662 (2018)
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) NeurIPS (2019)
Perek, S., Hazan, A., Barkan, E., Akselrod-Ballin, A.: Siamese network for dual-view mammography mass matching. In: Stoyanov, D., et al. (eds.) RAMBO/BIA/TIA -2018. LNCS, vol. 11040, pp. 55–63. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00946-5_6
Ranftl, R., Koltun, V.: Deep fundamental matrix estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 292–309. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_18
Ribli, D., Horváth, A., Unger, Z., Pollner, P., Csabai, I.: Detecting and classifying lesions in mammograms with deep learning. Sci. Rep. 8(1), 1–7 (2018)
Sampat, M.P., Bovik, A.C., Whitman, G.J., Markey, M.K.: A model-based framework for the detection of spiculated masses on mammography a. Med. Phys. 35(5), 2110–2123 (2008)
Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: Superglue: learning feature matching with graph neural networks. In: CVPR (2020)
Stewart, R., Andriluka, M., Ng, A.Y.: End-to-end people detection in crowded scenes. In: CVPR (2016)
Sun, J., Shen, Z., Wang, Y., Bao, H., Zhou, X.: LoFTR: detector-free local feature matching with transformers. In: CVPR (2021)
Tai, S.C., Chen, Z.S., Tsai, W.T.: An automatic mass detection system in mammograms based on complex texture features. IEEE J. Biomed. Health Inform. 18(2), 618–627 (2013)
Vaswani, A., et al.: Attention is all you need. In: NIPS (2017)
Wang, Y., et al.: End-to-end video instance segmentation with transformers. In: CVPR (2021)
Xi, P., Shu, C., Goubran, R.: Abnormality detection in mammography using deep convolutional neural networks. In: 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 1–6. IEEE (2018)
Yang, Z., et al.: Momminet-v2: mammographic multi-view mass identification networks. Med. Image Anal. 73, 102204 (2021)
Yi, K.M., Trulls, E., Ono, Y., Lepetit, V., Salzmann, M., Fua, P.: Learning to find good correspondences. In: CVPR (2018)
Zhang, A., et al.: Mining the benefits of two-stage and one-stage hoi detection. arXiv preprint arXiv:2108.05077 (2021)
Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)
Zou, C., et al.: End-to-end human object interaction detection with hoi transformer. In: CVPR (2021)
Acknowledgement
This work is supported by Exploratory Research Project of Zhejiang Lab (No. 2022RC0AN02), Project 2020BD006 supported by PKUBaidu Fund.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhao, Z., Wang, D., Chen, Y., Wang, Z., Wang, L. (2022). Check and Link: Pairwise Lesion Correspondence Guides Mammogram Mass Detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13681. Springer, Cham. https://doi.org/10.1007/978-3-031-19803-8_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-19803-8_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19802-1
Online ISBN: 978-3-031-19803-8
eBook Packages: Computer ScienceComputer Science (R0)