Skip to main content

Check and Link: Pairwise Lesion Correspondence Guides Mammogram Mass Detection

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13681))

Included in the following conference series:

Abstract

Detecting mass in mammogram is significant due to the high occurrence and mortality of breast cancer. In mammogram mass detection, modeling pairwise lesion correspondence explicitly is particularly important. However, most of the existing methods build relatively coarse correspondence and have not utilized correspondence supervision. In this paper, we propose a new transformer-based framework CL-Net to learn lesion detection and pairwise correspondence in an end-to-end manner. In CL-Net, View-Interactive Lesion Detector is proposed to achieve dynamic interaction across candidates of cross views, while Lesion Linker employs the correspondence supervision to guide the interaction process more accurately. The combination of these two designs accomplishes precise understanding of pairwise lesion correspondence for mammograms. Experiments show that CL-Net yields state-of-the-art performance on the public DDSM dataset and our in-house dataset. Moreover, it outperforms previous methods by a large margin in low FPI regime.

Z. Zhao and D. Wang—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal, R., Diaz, O., Lladó, X., Yap, M.H., Martí, R.: Automatic mass detection in mammograms using deep convolutional neural networks. J. Med. Imaging 6(3), 031409 (2019)

    Google Scholar 

  2. Brachmann, E., Rother, C.: Neural-guided RanSAC: learning where to sample model hypotheses. In: ICCV (2019)

    Google Scholar 

  3. Campanini, R., et al.: A novel featureless approach to mass detection in digital mammograms based on support vector machines. Phys. Med. Biol. 49(6), 961 (2004)

    Google Scholar 

  4. Cao, Z., et al.: DeepLima: deep learning based lesion identification in mammograms. In: ICCV Workshops (2019)

    Google Scholar 

  5. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  6. Chen, M., Liao, Y., Liu, S., Chen, Z., Wang, F., Qian, C.: Reformulating hoi detection as adaptive set prediction. In: CVPR (2021)

    Google Scholar 

  7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  8. DeTone, D., Malisiewicz, T., Rabinovich, A.: Superpoint: self-supervised interest point detection and description. In: CVPR Workshops (2018)

    Google Scholar 

  9. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  10. Dusmanu, M., Rocco, I., Pajdla, T., Pollefeys, M., Sivic, J., Torii, A., Sattler, T.: D2-net: a trainable CNN for joint detection and description of local features. arXiv preprint arXiv:1905.03561 (2019)

  11. Eltonsy, N.H., Tourassi, G.D., Elmaghraby, A.S.: A concentric morphology model for the detection of masses in mammography. IEEE Trans. Med. Imaging 26(6), 880–889 (2007)

    Article  Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  13. Heath, M., Bowyer, K., Kopans, D., Moore, R., Kegelmeyer, W.P.: The digital database for screening mammography. In: Proceedings of the 5th International Workshop on Digital Mammography, pp. 212–218. Medical Physics Publishing (2000)

    Google Scholar 

  14. Hu, H., Gu, J., Zhang, Z., Dai, J., Wei, Y.: Relation networks for object detection. In: CVPR (2018)

    Google Scholar 

  15. Kim, B., Lee, J., Kang, J., Kim, E.S., Kim, H.J.: HOTR: end-to-end human-object interaction detection with transformers. In: CVPR (2021)

    Google Scholar 

  16. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV (2017)

    Google Scholar 

  17. Liu, Y., Zhang, F., Zhang, Q., Wang, S., Wang, Y., Yu, Y.: Cross-view correspondence reasoning based on bipartite graph convolutional network for mammogram mass detection. In: CVPR (2020)

    Google Scholar 

  18. Liu, Y., et al.: Compare and contrast: detecting mammographic soft-tissue lesions with c2-net. Med. Image Anal. 71, 101999 (2021)

    Google Scholar 

  19. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  20. Ma, J., et al.: Cross-view relation networks for mammogram mass detection. In: ICPR (2020)

    Google Scholar 

  21. Mudigonda, N.R., Rangayyan, R.M., Desautels, J.L.: Detection of breast masses in mammograms by density slicing and texture flow-field analysis. IEEE Trans. Med. Imaging 20(12), 1215–1227 (2001)

    Article  Google Scholar 

  22. Ono, Y., Trulls, E., Fua, P., Yi, K.M.: LF-net: learning local features from images. arXiv preprint arXiv:1805.09662 (2018)

  23. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) NeurIPS (2019)

    Google Scholar 

  24. Perek, S., Hazan, A., Barkan, E., Akselrod-Ballin, A.: Siamese network for dual-view mammography mass matching. In: Stoyanov, D., et al. (eds.) RAMBO/BIA/TIA -2018. LNCS, vol. 11040, pp. 55–63. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00946-5_6

    Chapter  Google Scholar 

  25. Ranftl, R., Koltun, V.: Deep fundamental matrix estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 292–309. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_18

    Chapter  Google Scholar 

  26. Ribli, D., Horváth, A., Unger, Z., Pollner, P., Csabai, I.: Detecting and classifying lesions in mammograms with deep learning. Sci. Rep. 8(1), 1–7 (2018)

    Article  Google Scholar 

  27. Sampat, M.P., Bovik, A.C., Whitman, G.J., Markey, M.K.: A model-based framework for the detection of spiculated masses on mammography a. Med. Phys. 35(5), 2110–2123 (2008)

    Article  Google Scholar 

  28. Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: Superglue: learning feature matching with graph neural networks. In: CVPR (2020)

    Google Scholar 

  29. Stewart, R., Andriluka, M., Ng, A.Y.: End-to-end people detection in crowded scenes. In: CVPR (2016)

    Google Scholar 

  30. Sun, J., Shen, Z., Wang, Y., Bao, H., Zhou, X.: LoFTR: detector-free local feature matching with transformers. In: CVPR (2021)

    Google Scholar 

  31. Tai, S.C., Chen, Z.S., Tsai, W.T.: An automatic mass detection system in mammograms based on complex texture features. IEEE J. Biomed. Health Inform. 18(2), 618–627 (2013)

    Google Scholar 

  32. Vaswani, A., et al.: Attention is all you need. In: NIPS (2017)

    Google Scholar 

  33. Wang, Y., et al.: End-to-end video instance segmentation with transformers. In: CVPR (2021)

    Google Scholar 

  34. Xi, P., Shu, C., Goubran, R.: Abnormality detection in mammography using deep convolutional neural networks. In: 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA), pp. 1–6. IEEE (2018)

    Google Scholar 

  35. Yang, Z., et al.: Momminet-v2: mammographic multi-view mass identification networks. Med. Image Anal. 73, 102204 (2021)

    Google Scholar 

  36. Yi, K.M., Trulls, E., Ono, Y., Lepetit, V., Salzmann, M., Fua, P.: Learning to find good correspondences. In: CVPR (2018)

    Google Scholar 

  37. Zhang, A., et al.: Mining the benefits of two-stage and one-stage hoi detection. arXiv preprint arXiv:2108.05077 (2021)

  38. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)

  39. Zou, C., et al.: End-to-end human object interaction detection with hoi transformer. In: CVPR (2021)

    Google Scholar 

Download references

Acknowledgement

This work is supported by Exploratory Research Project of Zhejiang Lab (No. 2022RC0AN02), Project 2020BD006 supported by PKUBaidu Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwei Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3078 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, Z., Wang, D., Chen, Y., Wang, Z., Wang, L. (2022). Check and Link: Pairwise Lesion Correspondence Guides Mammogram Mass Detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13681. Springer, Cham. https://doi.org/10.1007/978-3-031-19803-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19803-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19802-1

  • Online ISBN: 978-3-031-19803-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics