Skip to main content

Unpaired Image Translation via Vector Symbolic Architectures

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13681))

Included in the following conference series:

Abstract

Image-to-image translation has played an important role in enabling synthetic data for computer vision. However, if the source and target domains have a large semantic mismatch, existing techniques often suffer from source content corruption aka semantic flipping. To address this problem, we propose a new paradigm for image-to-image translation using Vector Symbolic Architectures (VSA), a theoretical framework which defines algebraic operations in a high-dimensional vector (hypervector) space. We introduce VSA-based constraints on adversarial learning for source-to-target translations by learning a hypervector mapping that inverts the translation to ensure consistency with source content. We show both qualitatively and quantitatively that our method improves over other state-of-the-art techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad, S., Hawkins, J.: Properties of sparse distributed representations and their application to hierarchical temporal memory. arXiv preprint arXiv:1503.07469 (2015)

  2. Almahairi, A., Rajeshwar, S., Sordoni, A., Bachman, P., Courville, A.: Augmented cyclegan: Learning many-to-many mappings from unpaired data. In: International Conference on Machine Learning, pp. 195–204. PMLR (2018)

    Google Scholar 

  3. Benaim, S., Wolf, L.: One-sided unsupervised domain mapping. In: Advances in neural Information Processing Systems 30 (2017)

    Google Scholar 

  4. Bińkowski, M., Sutherland, D.J., Arbel, M., Gretton, A.: Demystifying mmd gans. arXiv preprint arXiv:1801.01401 (2018)

  5. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  6. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: CVPR (2016)

    Google Scholar 

  7. Devaranjan, J., Kar, A., Fidler, S.: Meta-sim2: unsupervised learning of scene structure for synthetic data generation. In: European Conference on Computer Vision, pp. 715–733. Springer (2020). https://doi.org/10.1007/978-3-030-58520-4_42

  8. Fu, H., Gong, M., Wang, C., Batmanghelich, K., Zhang, K., Tao, D.: Geometry-consistent generative adversarial networks for one-sided unsupervised domain mapping. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2427–2436 (2019)

    Google Scholar 

  9. Gayler, R.W.: Vector symbolic architectures answer jackendoff’s challenges for cognitive neuroscience. arXiv preprint cs/0412059 (2004)

    Google Scholar 

  10. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems 27 (2014)

    Google Scholar 

  11. Hoffman, J., et al.: Cycada: cycle-consistent adversarial domain adaptation. In: International Conference on Machine Learning, pp. 1989–1998. PMLR (2018)

    Google Scholar 

  12. Huang, X., Liu, M.Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 172–189 (2018)

    Google Scholar 

  13. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  14. Jia, Z., et al.: Semantically robust unpaired image translation for data with unmatched semantics statistics. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14273–14283 (2021)

    Google Scholar 

  15. Kanerva, P.: Hyperdimensional computing: an introduction to computing in distributed representation with high-dimensional random vectors. Cogn. Comput. 1(2), 139–159 (2009). https://doi.org/10.1007/s12559-009-9009-8

    Article  Google Scholar 

  16. Kar, A., et al: Meta-sim: learning to generate synthetic datasets. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4551–4560 (2019)

    Google Scholar 

  17. Kent, S., Olshausen, B.: A vector symbolic approach to scene transformation. Cognitive computational neuroscience (ccn 2017) (extended abstract) [link] (2017)

    Google Scholar 

  18. Kim, T., Cha, M., Kim, H., Lee, J.K., Kim, J.: Learning to discover cross-domain relations with generative adversarial networks. In: International Conference on Machine Learning, pp. 1857–1865. PMLR (2017)

    Google Scholar 

  19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  20. Kleyko, D., Rachkovskij, D.A., Osipov, E., Rahim, A.: A survey on hyperdimensional computing aka vector symbolic architectures, part ii: applications, cognitive models, and challenges. arXiv preprint arXiv:2112.15424 (2021)

  21. Kleyko, D., Rachkovskij, D.A., Osipov, E., Rahimi, A.: A survey on hyperdimensional computing aka vector symbolic architectures, part i: models and data transformations. arXiv preprint arXiv:2111.06077 (2021)

  22. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems 25 (2012)

    Google Scholar 

  23. Lee, H.Y., Tseng, H.Y., Huang, J.B., Singh, M., Yang, M.H.: Diverse image-to-image translation via disentangled representations. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 35–51 (2018)

    Google Scholar 

  24. Lim, J.H., Ye, J.C.: Geometric gan. arXiv preprint arXiv:1705.02894 (2017)

  25. Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  26. Montone, G., O’Regan, J.K., Terekhov, A.V.: Hyper-dimensional computing for a visual question-answering system that is trainable end-to-end. arXiv preprint arXiv:1711.10185 (2017)

  27. Neubert, P., Schubert, S.: Hyperdimensional computing as a framework for systematic aggregation of image descriptors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16938–16947 (2021)

    Google Scholar 

  28. Neubert, P., Schubert, S., Protzel, P.: An introduction to hyperdimensional computing for robotics. KI-Künstliche Intelligenz 33(4), 319–330 (2019). https://doi.org/10.1007/s13218-019-00623-z

    Article  Google Scholar 

  29. Osipov, E., et al.: Hyperseed: unsupervised learning with vector symbolic architectures. arXiv preprint arXiv:2110.08343 (2021)

  30. Park, T., Efros, A.A., Zhang, R., Zhu, J.Y.: Contrastive learning for unpaired image-to-image translation. In: European Conference on Computer Vision, pp. 319–345. Springer (2020). https://doi.org/10.1007/978-3-030-58545-7_19

  31. Prakash, A., Debnath, S., Lafleche, J.F., Cameracci, E., Birchfield, S., Law, M.T., et al.: Self-supervised real-to-sim scene generation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 16044–16054 (2021)

    Google Scholar 

  32. Purdy, S.: Encoding data for htm systems. arXiv preprint arXiv:1602.05925 (2016)

  33. Richter, S.R., AlHaija, H.A., Koltun, V.: Enhancing photorealism enhancement. arXiv preprint arXiv:2105.04619 (2021)

  34. Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: Ground truth from computer games. In: European Conference on Computer Vision, pp. 102–118. Springer (2016). https://doi.org/10.1007/978-3-319-46475-6_7

  35. Schlegel, K., Neubert, P., Protzel, P.: A comparison of vector symbolic architectures. Artif. Intell. Rev. 1–33 (2021). https://doi.org/10.1007/s10462-021-10110-3

  36. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  37. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  38. Yi, Z., Zhang, H., Tan, P., Gong, M.: Dualgan: unsupervised dual learning for image-to-image translation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2849–2857 (2017)

    Google Scholar 

  39. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Acknowledgments

We thank Mihir Jain, Shingo Takagi, Patrick Rodriguez, Sarah Watson, Zijian He, Peizhao Zhang, and Tao Xu for their helpful feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Theiss .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 8732 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Theiss, J., Leverett, J., Kim, D., Prakash, A. (2022). Unpaired Image Translation via Vector Symbolic Architectures. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13681. Springer, Cham. https://doi.org/10.1007/978-3-031-19803-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19803-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19802-1

  • Online ISBN: 978-3-031-19803-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics