Skip to main content

Modeling Mask Uncertainty in Hyperspectral Image Reconstruction

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13679))

Included in the following conference series:

Abstract

Recently, hyperspectral imaging (HSI) has attracted increasing research attention, especially for the ones based on a coded aperture snapshot spectral imaging (CASSI) system. Existing deep HSI reconstruction models are generally trained on paired data to retrieve original signals upon 2D compressed measurements given by a particular optical hardware mask in CASSI, during which the mask largely impacts the reconstruction performance and could work as a “model hyperparameter” governing on data augmentations. This mask-specific training style will lead to a hardware miscalibration issue, which sets up barriers to deploying deep HSI models among different hardware and noisy environments. To address this challenge, we introduce mask uncertainty for HSI with a complete variational Bayesian learning treatment and explicitly model it through a mask decomposition inspired by real hardware. Specifically, we propose a novel Graph-based Self-Tuning (GST) network to reason uncertainties adapting to varying spatial structures of masks among different hardware. Moreover, we develop a bilevel optimization framework to balance HSI reconstruction and uncertainty estimation, accounting for the hyperparameter property of masks. Extensive experimental results validate the effectiveness (over 33/30 dB) of the proposed method under two miscalibration scenarios and demonstrate a highly competitive performance compared with the state-of-the-art well-calibrated methods. Our source code and pre-trained models are available at https://github.com/Jiamian-Wang/mask_uncertainty_spectral_SCI

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We used a two-pixel shift for neighbored spectral channels following [34, 44]. More details about spectral modulation could be found in [52].

References

  1. Arguello, H., Rueda, H., Wu, Y., Prather, D.W., Arce, G.R.: Higher-order computational model for coded aperture spectral imaging. Appl. Opt. 52(10), D12–D21 (2013)

    Article  Google Scholar 

  2. Bioucas-Dias, J.M., Figueiredo, M.A.: A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Process. 16(12), 2992–3004 (2007)

    Article  MathSciNet  Google Scholar 

  3. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in neural network. In: ICML (2015)

    Google Scholar 

  4. Cai, Y., et al.: Mask-guided spectral-wise transformer for efficient hyperspectral image reconstruction. In: CVPR (2022)

    Google Scholar 

  5. Chen, X., Li, L.J., Fei-Fei, L., Gupta, A.: Iterative visual reasoning beyond convolutions. In: CVPR (2018)

    Google Scholar 

  6. Choi, I., Kim, M., Gutierrez, D., Jeon, D., Nam, G.: High-quality hyperspectral reconstruction using a spectral prior. Tech. rep. (2017)

    Google Scholar 

  7. Figueiredo, M.A., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. sel. top. sig. process. 1(4), 586–597 (2007)

    Google Scholar 

  8. Fort, S., Hu, H., Lakshminarayanan, B.: Deep ensembles: a loss landscape perspective. arXiv preprint arXiv:1912.02757 (2019)

  9. Gal, Y.: Uncertainty in deep learning. Ph.D. thesis, University of Cambridge (2016)

    Google Scholar 

  10. Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: representing model uncertainty in deep learning. In: ICML (2016)

    Google Scholar 

  11. Gehm, M.E., John, R., Brady, D.J., Willett, R.M., Schulz, T.J.: Single-shot compressive spectral imaging with a dual-disperser architecture. Opt. Express 15(21), 14013–14027 (2007)

    Article  Google Scholar 

  12. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256. JMLR Workshop and Conference Proceedings (2010)

    Google Scholar 

  13. Hershey, J.R., Roux, J.L., Weninger, F.: Deep unfolding: model-based inspiration of novel deep architectures. arXiv preprint arXiv:1409.2574 (2014)

  14. Hoffman, M.D., Johnson, M.J.: Elbo surgery: yet another way to carve up the variational evidence lower bound. In: NeurIPS Workshop (2016)

    Google Scholar 

  15. Hu, X., et al.: Hdnet: high-resolution dual-domain learning for spectral compressive imaging. In: CVPR (2022)

    Google Scholar 

  16. Huang, T., Dong, W., Yuan, X., Wu, J., Shi, G.: Deep gaussian scale mixture prior for spectral compressive imaging. In: CVPR (2021)

    Google Scholar 

  17. Johnson, W.R., Wilson, D.W., Fink, W., Humayun, M.S., Bearman, G.H.: Snapshot hyperspectral imaging in ophthalmology. J. Biomed. Opt. 12(1), 014036 (2007)

    Article  Google Scholar 

  18. Kendall, A., Gal, Y.: What uncertainties do we need in bayesian deep learning for computer vision. In: NeurIPS (2017)

    Google Scholar 

  19. Khan, M., Nielsen, D., Tangkaratt, V., Lin, W., Gal, Y., Srivastava, A.: Fast and scalable bayesian deep learning by weight-perturbation in adam. In: ICML (2018)

    Google Scholar 

  20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  21. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  22. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)

    Google Scholar 

  23. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: NeurIPS (2017)

    Google Scholar 

  24. Li, K., Zhang, Y., Li, K., Li, Y., Fu, Y.: Visual semantic reasoning for image-text matching. In: ICCV (2019)

    Google Scholar 

  25. Lin, J., et al.: Coarse-to-fine sparse transformer for hyperspectral image reconstruction. arXiv preprint arXiv:2203.04845 (2022)

  26. Liu, J.Z., Paisley, J., Kioumourtzoglou, M.A., Coull, B.: Accurate uncertainty estimation and decomposition in ensemble learning. arXiv preprint arXiv:1911.04061 (2019)

  27. Liu, Y., Yuan, X., Suo, J., Brady, D.J., Dai, Q.: Rank minimization for snapshot compressive imaging. IEEE Trans. Pattern Anal. Mach. Intell. 41(12), 2990–3006 (2018)

    Article  Google Scholar 

  28. Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., García-Navarrete, O.L., Blasco, J.: Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food Bioprocess Technol. 5(4), 1121–1142 (2012)

    Article  Google Scholar 

  29. Lu, G., Fei, B.: Medical hyperspectral imaging: a review. J. Biomed. Opt. 19(1), 010901 (2014)

    Article  Google Scholar 

  30. Lu, R., Chen, Y.R.: Hyperspectral imaging for safety inspection of food and agricultural products. In: Pathogen Detection and Remediation for Safe Eating, vol. 3544, pp. 121–133. International Society for Optics and Photonics (1999)

    Google Scholar 

  31. Ma, J., Liu, X.Y., Shou, Z., Yuan, X.: Deep tensor admm-net for snapshot compressive imaging. In: ICCV (2019)

    Google Scholar 

  32. MacKay, D.J.C.: Bayesian methods for adaptive models. Ph.D. thesis, California Institute of Technology (1992)

    Google Scholar 

  33. MacKay, M., Vicol, P., Lorraine, J., Duvenaud, D., Grosse, R.: Self-tuning networks: bilevel optimization of hyperparameters using structured best-response functions. arXiv preprint arXiv:1903.03088 (2019)

  34. Meng, Z., Ma, J., Yuan, X.: End-to-end low cost compressive spectral imaging with spatial-spectral self-attention. In: ECCV (2020)

    Google Scholar 

  35. Meng, Z., Qiao, M., Ma, J., Yu, Z., Xu, K., Yuan, X.: Snapshot multispectral endomicroscopy. Opt. Lett. 45(14), 3897–3900 (2020)

    Article  Google Scholar 

  36. Meng, Z., Yu, Z., Xu, K., Yuan, X.: Self-supervised neural networks for spectral snapshot compressive imaging. In: ICCV (2021)

    Google Scholar 

  37. Miao, X., Yuan, X., Pu, Y., Athitsos, V.: l-net: reconstruct hyperspectral images from a snapshot measurement. In: ICCV (2019)

    Google Scholar 

  38. Qiao, M., Liu, X., Yuan, X.: Snapshot spatial-temporal compressive imaging. Opt. Lett. 45(7), 1659–1662 (2020)

    Article  Google Scholar 

  39. Qiao, M., Meng, Z., Ma, J., Yuan, X.: Deep learning for video compressive sensing. Apl Photonics 5(3), 030801 (2020)

    Article  Google Scholar 

  40. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Networks 20(1), 61–80 (2008)

    Article  Google Scholar 

  41. Song, L., Wang, L., Kim, M.H., Huang, H.: High-accuracy image formation model for coded aperture snapshot spectral imaging. IEEE Trans. Comput. Imaging 8, 188–200 (2022)

    Article  MathSciNet  Google Scholar 

  42. Tao, Z., Li, Y., Ding, B., Zhang, C., Zhou, J., Fu, Y.: Learning to mutate with hypergradient guided population. In: NeurIPS (2020)

    Google Scholar 

  43. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A., Bottou, L.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(12), 3371–3408 (2010)

    Google Scholar 

  44. Wang, J., Zhang, Y., Yuan, X., Fu, Y., Tao, Z.: A new backbone for hyperspectral image reconstruction. arXiv preprint arXiv:2108.07739 (2021)

  45. Wang, L., Sun, C., Fu, Y., Kim, M.H., Huang, H.: Hyperspectral image reconstruction using a deep spatial-spectral prior. In: CVPR (2019)

    Google Scholar 

  46. Wang, L., Sun, C., Zhang, M., Fu, Y., Huang, H.: Dnu: deep non-local unrolling for computational spectral imaging. In: CVPR (2020)

    Google Scholar 

  47. Wang, L., Xiong, Z., Shi, G., Wu, F., Zeng, W.: Adaptive nonlocal sparse representation for dual-camera compressive hyperspectral imaging. IEEE Trans. Pattern Anal. Mach. Intell. 39(10), 2104–2111 (2016)

    Article  Google Scholar 

  48. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  49. Wilson, A.G., Izmailov, P.: Bayesian deep learning and a probabilistic perspective of generalization. arXiv preprint arXiv:2002.08791 (2020)

  50. Yuan, X., Liu, Y., Suo, J., Durand, F., Dai, Q.: Plug-and-play algorithms for video snapshot compressive imaging. IEEE Trans. Pattern Anal. Mach. Intell. 01, 1–1 (2021)

    Article  Google Scholar 

  51. Yuan, X.: Generalized alternating projection based total variation minimization for compressive sensing. In: ICIP (2016)

    Google Scholar 

  52. Yuan, X., Brady, D.J., Katsaggelos, A.K.: Snapshot compressive imaging: theory, algorithms, and applications. IEEE Signal Process. Mag. 38(2), 65–88 (2021)

    Article  Google Scholar 

  53. Yuan, X., Liu, Y., Suo, J., Dai, Q.: Plug-and-play algorithms for large-scale snapshot compressive imaging. In: CVPR (2020)

    Google Scholar 

  54. Yuan, Y., Zheng, X., Lu, X.: Hyperspectral image superresolution by transfer learning. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 10(5), 1963–1974 (2017)

    Article  Google Scholar 

  55. Zhang, S., Wang, L., Fu, Y., Zhong, X., Huang, H.: Computational hyperspectral imaging based on dimension-discriminative low-rank tensor recovery. In: ICCV (2019)

    Google Scholar 

  56. Zhang, T., Fu, Y., Wang, L., Huang, H.: Hyperspectral image reconstruction using deep external and internal learning. In: ICCV (2019)

    Google Scholar 

  57. Zhang, Y., Li, K., Li, K., Fu, Y.: Mr image super-resolution with squeeze and excitation reasoning attention network. In: CVPR (2021)

    Google Scholar 

  58. Zhu, R., Tao, Z., Li, Y., Li, S.: Automated graph learning via population based self-tuning GCN. In: The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 2096–2100. ACM (2021)

    Google Scholar 

  59. Zou, Y., Fu, Y., Zheng, Y., Li, W.: Csr-net: camera spectral response network for dimensionality reduction and classification in hyperspectral imagery. Remote Sens. 12(20), 3294–3314 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiamian Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 10538 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Zhang, Y., Yuan, X., Meng, Z., Tao, Z. (2022). Modeling Mask Uncertainty in Hyperspectral Image Reconstruction. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13679. Springer, Cham. https://doi.org/10.1007/978-3-031-19800-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19800-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19799-4

  • Online ISBN: 978-3-031-19800-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics