Abstract
Recently, hyperspectral imaging (HSI) has attracted increasing research attention, especially for the ones based on a coded aperture snapshot spectral imaging (CASSI) system. Existing deep HSI reconstruction models are generally trained on paired data to retrieve original signals upon 2D compressed measurements given by a particular optical hardware mask in CASSI, during which the mask largely impacts the reconstruction performance and could work as a “model hyperparameter” governing on data augmentations. This mask-specific training style will lead to a hardware miscalibration issue, which sets up barriers to deploying deep HSI models among different hardware and noisy environments. To address this challenge, we introduce mask uncertainty for HSI with a complete variational Bayesian learning treatment and explicitly model it through a mask decomposition inspired by real hardware. Specifically, we propose a novel Graph-based Self-Tuning (GST) network to reason uncertainties adapting to varying spatial structures of masks among different hardware. Moreover, we develop a bilevel optimization framework to balance HSI reconstruction and uncertainty estimation, accounting for the hyperparameter property of masks. Extensive experimental results validate the effectiveness (over 33/30 dB) of the proposed method under two miscalibration scenarios and demonstrate a highly competitive performance compared with the state-of-the-art well-calibrated methods. Our source code and pre-trained models are available at https://github.com/Jiamian-Wang/mask_uncertainty_spectral_SCI
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arguello, H., Rueda, H., Wu, Y., Prather, D.W., Arce, G.R.: Higher-order computational model for coded aperture spectral imaging. Appl. Opt. 52(10), D12–D21 (2013)
Bioucas-Dias, J.M., Figueiredo, M.A.: A new twist: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Process. 16(12), 2992–3004 (2007)
Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in neural network. In: ICML (2015)
Cai, Y., et al.: Mask-guided spectral-wise transformer for efficient hyperspectral image reconstruction. In: CVPR (2022)
Chen, X., Li, L.J., Fei-Fei, L., Gupta, A.: Iterative visual reasoning beyond convolutions. In: CVPR (2018)
Choi, I., Kim, M., Gutierrez, D., Jeon, D., Nam, G.: High-quality hyperspectral reconstruction using a spectral prior. Tech. rep. (2017)
Figueiredo, M.A., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. sel. top. sig. process. 1(4), 586–597 (2007)
Fort, S., Hu, H., Lakshminarayanan, B.: Deep ensembles: a loss landscape perspective. arXiv preprint arXiv:1912.02757 (2019)
Gal, Y.: Uncertainty in deep learning. Ph.D. thesis, University of Cambridge (2016)
Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: representing model uncertainty in deep learning. In: ICML (2016)
Gehm, M.E., John, R., Brady, D.J., Willett, R.M., Schulz, T.J.: Single-shot compressive spectral imaging with a dual-disperser architecture. Opt. Express 15(21), 14013–14027 (2007)
Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256. JMLR Workshop and Conference Proceedings (2010)
Hershey, J.R., Roux, J.L., Weninger, F.: Deep unfolding: model-based inspiration of novel deep architectures. arXiv preprint arXiv:1409.2574 (2014)
Hoffman, M.D., Johnson, M.J.: Elbo surgery: yet another way to carve up the variational evidence lower bound. In: NeurIPS Workshop (2016)
Hu, X., et al.: Hdnet: high-resolution dual-domain learning for spectral compressive imaging. In: CVPR (2022)
Huang, T., Dong, W., Yuan, X., Wu, J., Shi, G.: Deep gaussian scale mixture prior for spectral compressive imaging. In: CVPR (2021)
Johnson, W.R., Wilson, D.W., Fink, W., Humayun, M.S., Bearman, G.H.: Snapshot hyperspectral imaging in ophthalmology. J. Biomed. Opt. 12(1), 014036 (2007)
Kendall, A., Gal, Y.: What uncertainties do we need in bayesian deep learning for computer vision. In: NeurIPS (2017)
Khan, M., Nielsen, D., Tangkaratt, V., Lin, W., Gal, Y., Srivastava, A.: Fast and scalable bayesian deep learning by weight-perturbation in adam. In: ICML (2018)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)
Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: NeurIPS (2017)
Li, K., Zhang, Y., Li, K., Li, Y., Fu, Y.: Visual semantic reasoning for image-text matching. In: ICCV (2019)
Lin, J., et al.: Coarse-to-fine sparse transformer for hyperspectral image reconstruction. arXiv preprint arXiv:2203.04845 (2022)
Liu, J.Z., Paisley, J., Kioumourtzoglou, M.A., Coull, B.: Accurate uncertainty estimation and decomposition in ensemble learning. arXiv preprint arXiv:1911.04061 (2019)
Liu, Y., Yuan, X., Suo, J., Brady, D.J., Dai, Q.: Rank minimization for snapshot compressive imaging. IEEE Trans. Pattern Anal. Mach. Intell. 41(12), 2990–3006 (2018)
Lorente, D., Aleixos, N., Gómez-Sanchis, J., Cubero, S., García-Navarrete, O.L., Blasco, J.: Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food Bioprocess Technol. 5(4), 1121–1142 (2012)
Lu, G., Fei, B.: Medical hyperspectral imaging: a review. J. Biomed. Opt. 19(1), 010901 (2014)
Lu, R., Chen, Y.R.: Hyperspectral imaging for safety inspection of food and agricultural products. In: Pathogen Detection and Remediation for Safe Eating, vol. 3544, pp. 121–133. International Society for Optics and Photonics (1999)
Ma, J., Liu, X.Y., Shou, Z., Yuan, X.: Deep tensor admm-net for snapshot compressive imaging. In: ICCV (2019)
MacKay, D.J.C.: Bayesian methods for adaptive models. Ph.D. thesis, California Institute of Technology (1992)
MacKay, M., Vicol, P., Lorraine, J., Duvenaud, D., Grosse, R.: Self-tuning networks: bilevel optimization of hyperparameters using structured best-response functions. arXiv preprint arXiv:1903.03088 (2019)
Meng, Z., Ma, J., Yuan, X.: End-to-end low cost compressive spectral imaging with spatial-spectral self-attention. In: ECCV (2020)
Meng, Z., Qiao, M., Ma, J., Yu, Z., Xu, K., Yuan, X.: Snapshot multispectral endomicroscopy. Opt. Lett. 45(14), 3897–3900 (2020)
Meng, Z., Yu, Z., Xu, K., Yuan, X.: Self-supervised neural networks for spectral snapshot compressive imaging. In: ICCV (2021)
Miao, X., Yuan, X., Pu, Y., Athitsos, V.: l-net: reconstruct hyperspectral images from a snapshot measurement. In: ICCV (2019)
Qiao, M., Liu, X., Yuan, X.: Snapshot spatial-temporal compressive imaging. Opt. Lett. 45(7), 1659–1662 (2020)
Qiao, M., Meng, Z., Ma, J., Yuan, X.: Deep learning for video compressive sensing. Apl Photonics 5(3), 030801 (2020)
Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Networks 20(1), 61–80 (2008)
Song, L., Wang, L., Kim, M.H., Huang, H.: High-accuracy image formation model for coded aperture snapshot spectral imaging. IEEE Trans. Comput. Imaging 8, 188–200 (2022)
Tao, Z., Li, Y., Ding, B., Zhang, C., Zhou, J., Fu, Y.: Learning to mutate with hypergradient guided population. In: NeurIPS (2020)
Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A., Bottou, L.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11(12), 3371–3408 (2010)
Wang, J., Zhang, Y., Yuan, X., Fu, Y., Tao, Z.: A new backbone for hyperspectral image reconstruction. arXiv preprint arXiv:2108.07739 (2021)
Wang, L., Sun, C., Fu, Y., Kim, M.H., Huang, H.: Hyperspectral image reconstruction using a deep spatial-spectral prior. In: CVPR (2019)
Wang, L., Sun, C., Zhang, M., Fu, Y., Huang, H.: Dnu: deep non-local unrolling for computational spectral imaging. In: CVPR (2020)
Wang, L., Xiong, Z., Shi, G., Wu, F., Zeng, W.: Adaptive nonlocal sparse representation for dual-camera compressive hyperspectral imaging. IEEE Trans. Pattern Anal. Mach. Intell. 39(10), 2104–2111 (2016)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Wilson, A.G., Izmailov, P.: Bayesian deep learning and a probabilistic perspective of generalization. arXiv preprint arXiv:2002.08791 (2020)
Yuan, X., Liu, Y., Suo, J., Durand, F., Dai, Q.: Plug-and-play algorithms for video snapshot compressive imaging. IEEE Trans. Pattern Anal. Mach. Intell. 01, 1–1 (2021)
Yuan, X.: Generalized alternating projection based total variation minimization for compressive sensing. In: ICIP (2016)
Yuan, X., Brady, D.J., Katsaggelos, A.K.: Snapshot compressive imaging: theory, algorithms, and applications. IEEE Signal Process. Mag. 38(2), 65–88 (2021)
Yuan, X., Liu, Y., Suo, J., Dai, Q.: Plug-and-play algorithms for large-scale snapshot compressive imaging. In: CVPR (2020)
Yuan, Y., Zheng, X., Lu, X.: Hyperspectral image superresolution by transfer learning. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 10(5), 1963–1974 (2017)
Zhang, S., Wang, L., Fu, Y., Zhong, X., Huang, H.: Computational hyperspectral imaging based on dimension-discriminative low-rank tensor recovery. In: ICCV (2019)
Zhang, T., Fu, Y., Wang, L., Huang, H.: Hyperspectral image reconstruction using deep external and internal learning. In: ICCV (2019)
Zhang, Y., Li, K., Li, K., Fu, Y.: Mr image super-resolution with squeeze and excitation reasoning attention network. In: CVPR (2021)
Zhu, R., Tao, Z., Li, Y., Li, S.: Automated graph learning via population based self-tuning GCN. In: The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 2096–2100. ACM (2021)
Zou, Y., Fu, Y., Zheng, Y., Li, W.: Csr-net: camera spectral response network for dimensionality reduction and classification in hyperspectral imagery. Remote Sens. 12(20), 3294–3314 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, J., Zhang, Y., Yuan, X., Meng, Z., Tao, Z. (2022). Modeling Mask Uncertainty in Hyperspectral Image Reconstruction. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13679. Springer, Cham. https://doi.org/10.1007/978-3-031-19800-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-19800-7_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19799-4
Online ISBN: 978-3-031-19800-7
eBook Packages: Computer ScienceComputer Science (R0)