Abstract
We propose a novel image retouching method by modeling the retouching process as performing a sequence of newly introduced trainable neural color operators. The neural color operator mimics the behavior of traditional color operators and learns pixelwise color transformation while its strength is controlled by a scalar. To reflect the homomorphism property of color operators, we employ equivariant mapping and adopt an encoder-decoder structure which maps the non-linear color transformation to a much simpler transformation (i.e., translation) in a high dimensional space. The scalar strength of each neural color operator is predicted using CNN based strength predictors by analyzing global image statistics. Overall, our method is rather lightweight and offers flexible controls. Experiments and user studies on public datasets show that our method consistently achieves the best results compared with SOTA methods in both quantitative measures and visual qualities. Code is available at https://github.com/amberwangyili/neurop.
Work done during Yili Wang’s internship at VIS, Baidu.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Afifi, M., Derpanis, K.G., Ommer, B., Brown, M.S.: Learning multi-scale photo exposure correction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2021)
Aly, H.A., Dubois, E.: Image up-sampling using total-variation regularization with a new observation model. IEEE Trans. Image Process. 14(10), 1647–1659 (2005)
Arici, T., Dikbas, S., Altunbasak, Y.: A histogram modification framework and its application for image contrast enhancement. IEEE Trans. Image Process. 18(9), 1921–1935 (2009)
Aubry, M., Paris, S., Hasinoff, S.W., Kautz, J., Durand, F.: Fast local Laplacian filters: theory and applications. ACM Trans. Graph. (TOG) 33(5), 1–14 (2014)
Bianco, S., Cusano, C., Piccoli, F., Schettini, R.: Content-preserving tone adjustment for image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2019)
Bychkovsky, V., Paris, S., Chan, E., Durand, F.: Learning photographic global tonal adjustment with a database of input / output image pairs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 97–104. IEEE (2011)
Chai, Y., Giryes, R., Wolf, L.: Supervised and unsupervised learning of parameterized color enhancement. In: The IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 992–1000 (2020)
Chen, H.T., Wei, L.Y., Chang, C.F.: Nonlinear revision control for images. ACM Trans. Graph. 30(4) (2011). https://doi.org/10.1145/2010324.1965000
Chen, Y.S., Wang, Y.C., Kao, M.H., Chuang, Y.Y.: Deep photo enhancer: unpaired learning for image enhancement from photographs with GANs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6306–6314 (2018)
Deng, Y., Loy, C.C., Tang, X.: Aesthetic-driven image enhancement by adversarial learning. In: 2018 ACM Multimedia Conference on Multimedia Conference (MM), pp. 870–878. ACM (2018)
Gharbi, M., Chen, J., Barron, J.T., Hasinoff, S.W., Durand, F.: Deep bilateral learning for real-time image enhancement. ACM Trans. Graph. (TOG) 36(4), 118 (2017)
Grabler, F., Agrawala, M., Li, W., Dontcheva, M., Igarashi, T.: Generating photo manipulation tutorials by demonstration. ACM Trans. Graph. 28(3) (2009). https://doi.org/10.1145/1531326.1531372
Guo, C., et al.: Zero-reference deep curve estimation for low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1780–1789 (2020)
He, J., Liu, Y., Qiao, Yu., Dong, C.: Conditional sequential modulation for efficient global image retouching. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 679–695. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_40
Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., Meger, D.: Deep reinforcement learning that matters. In: Proceedings of the AAAI Conference on Artificial Intelligence (2018)
Hu, Y., He, H., Xu, C., Wang, B., Lin, S.: Exposure: a white-box photo post-processing framework. ACM Trans. Graph. (TOG) 37(2), 1–17 (2018)
Hwang, S.J., Kapoor, A., Kang, S.B.: Context-based automatic local image enhancement. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 569–582. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33718-5_41
Ignatov, A., Kobyshev, N., Timofte, R., Vanhoey, K., Van Gool, L.: DSLR-quality photos on mobile devices with deep convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 3277–3285 (2017)
Ignatov, A., Kobyshev, N., Timofte, R., Vanhoey, K., Van Gool, L.: WESPE: weakly supervised photo enhancer for digital cameras. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 691–700 (2018)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1125–1134 (2017)
Jiang, Y., et al.: EnlightenGAN: deep light enhancement without paired supervision. IEEE Trans. Image Process. (TIP) 30, 2340–2349 (2021)
Jimenez Rezende, D., Eslami, S., Mohamed, S., Battaglia, P., Jaderberg, M., Heess, N.: Unsupervised learning of 3D structure from images. Adv. Neural. Inf. Process. Syst. 29, 4996–5004 (2016)
Kim, H.-U., Koh, Y.J., Kim, C.-S.: Global and local enhancement networks for paired and unpaired image enhancement. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 339–354. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_21
Kim, H.-U., Koh, Y.J., Kim, C.-S.: PieNet: personalized image enhancement network. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 374–390. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_23
Kim, H., Choi, S.M., Kim, C.S., Koh, Y.J.: Representative color transform for image enhancement. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4459–4468, October 2021
Kim, Y.T.: Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans. Consum. Electron. 43(1), 1–8 (1997)
Kulkarni, T.D., Whitney, W., Kohli, P., Tenenbaum, J.B.: Deep convolutional inverse graphics network. arXiv preprint arXiv:1503.03167 (2015)
Lee, C., Lee, C., Kim, C.S.: Contrast enhancement based on layered difference representation of 2D histograms. IEEE Trans. Image Process. 22(12), 5372–5384 (2013)
Li, C., Guo, C., Ai, Q., Zhou, S., Loy, C.C.: Flexible piecewise curves estimation for photo enhancement (2020)
Liang, J., Zeng, H., Cui, M., Xie, X., Zhang, L.: Ppr10k: a large-scale portrait photo retouching dataset with human-region mask and group-level consistency. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 653–661, June 2021
Liang, J., Zeng, H., Zhang, L.: High-resolution photorealistic image translation in real-time: A laplacian pyramid translation network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2021)
Liu, E., Li, S., Liu, S.: Color enhancement using global parameters and local features learning. In: Ishikawa, H., Liu, C.-L., Pajdla, T., Shi, J. (eds.) ACCV 2020. LNCS, vol. 12623, pp. 202–216. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69532-3_13
Liu, Y., et al.: Very lightweight photo retouching network with conditional sequential modulation. CoRR abs/2104.06279 (2021). http://arxiv.org/abs/2104.06279
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440 (2015)
Moran, S., Marza, P., McDonagh, S., Parisot, S., Slabaugh, G.: DeepLPF: deep local parametric filters for image enhancement. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12826–12835 (2020)
Moran, S., McDonagh, S., Slabaugh, G.: CURL: neural curve layers for global image enhancement. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 9796–9803. IEEE (2021)
Ni, Z., Yang, W., Wang, S., Ma, L., Kwong, S.: Towards unsupervised deep image enhancement with generative adversarial network. IEEE Trans. Image Process. (TIP) 29, 9140–9151 (2020)
Park, J., Lee, J.Y., Yoo, D., So Kweon, I.: Distort-and-recover: color enhancement using deep reinforcement learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5928–5936 (2018)
Shi, J., Xu, N., Xu, Y., Bui, T., Dernoncourt, F., Xu, C.: Learning by planning: language-guided global image editing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13590–13599 (2021)
Stark, J.A.: Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans. Image Process. 9(5), 889–896 (2000)
Wang, B., Yu, Y., Xu, Y.Q.: Example-based image color and tone style enhancement. ACM Trans. Graph. (TOG) 30(4), 1–12 (2011)
Wang, R., Zhang, Q., Fu, C.W., Shen, X., Zheng, W.S., Jia, J.: Underexposed photo enhancement using deep illumination estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6849–6857 (2019)
Wang, T., et al.: Real-time image enhancer via learnable spatial-aware 3D lookup tables. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2471–2480, October 2021
Wang, Y., Chen, Q., Zhang, B.: Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Trans. Consum. Electron. 45(1), 68–75 (1999)
Yan, J., Lin, S., Bing Kang, S., Tang, X.: A learning-to-rank approach for image color enhancement. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2987–2994 (2014)
Yan, Z., Zhang, H., Wang, B., Paris, S., Yu, Y.: Automatic photo adjustment using deep neural networks. ACM Trans. Graph. (TOG) 35(2), 11 (2016)
Ying, Z., Li, G., Ren, Y., Wang, R., Wang, W.: A new low-light image enhancement algorithm using camera response model. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (CVPRW), pp. 3015–3022 (2017)
Zamir, S.W., et al.: Learning enriched features for real image restoration and enhancement. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 492–511. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_30
Zeng, H., Cai, J., Li, L., Cao, Z., Zhang, L.: Learning image-adaptive 3D lookup tables for high performance photo enhancement in real-time. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) (2020)
Zhao, L., Lu, S.P., Chen, T., Yang, Z., Shamir, A.: Deep symmetric network for underexposed image enhancement with recurrent attentional learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 12075–12084, October 2021
Acknowledgements
This work is supported by the National Natural Science Foundation of China (Project Number: 61932003).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, Y. et al. (2022). Neural Color Operators for Sequential Image Retouching. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13679. Springer, Cham. https://doi.org/10.1007/978-3-031-19800-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-19800-7_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19799-4
Online ISBN: 978-3-031-19800-7
eBook Packages: Computer ScienceComputer Science (R0)