Skip to main content

Neural Color Operators for Sequential Image Retouching

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

We propose a novel image retouching method by modeling the retouching process as performing a sequence of newly introduced trainable neural color operators. The neural color operator mimics the behavior of traditional color operators and learns pixelwise color transformation while its strength is controlled by a scalar. To reflect the homomorphism property of color operators, we employ equivariant mapping and adopt an encoder-decoder structure which maps the non-linear color transformation to a much simpler transformation (i.e., translation) in a high dimensional space. The scalar strength of each neural color operator is predicted using CNN based strength predictors by analyzing global image statistics. Overall, our method is rather lightweight and offers flexible controls. Experiments and user studies on public datasets show that our method consistently achieves the best results compared with SOTA methods in both quantitative measures and visual qualities. Code is available at https://github.com/amberwangyili/neurop.

Work done during Yili Wang’s internship at VIS, Baidu.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Afifi, M., Derpanis, K.G., Ommer, B., Brown, M.S.: Learning multi-scale photo exposure correction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  2. Aly, H.A., Dubois, E.: Image up-sampling using total-variation regularization with a new observation model. IEEE Trans. Image Process. 14(10), 1647–1659 (2005)

    Article  Google Scholar 

  3. Arici, T., Dikbas, S., Altunbasak, Y.: A histogram modification framework and its application for image contrast enhancement. IEEE Trans. Image Process. 18(9), 1921–1935 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aubry, M., Paris, S., Hasinoff, S.W., Kautz, J., Durand, F.: Fast local Laplacian filters: theory and applications. ACM Trans. Graph. (TOG) 33(5), 1–14 (2014)

    Article  Google Scholar 

  5. Bianco, S., Cusano, C., Piccoli, F., Schettini, R.: Content-preserving tone adjustment for image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2019)

    Google Scholar 

  6. Bychkovsky, V., Paris, S., Chan, E., Durand, F.: Learning photographic global tonal adjustment with a database of input / output image pairs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 97–104. IEEE (2011)

    Google Scholar 

  7. Chai, Y., Giryes, R., Wolf, L.: Supervised and unsupervised learning of parameterized color enhancement. In: The IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 992–1000 (2020)

    Google Scholar 

  8. Chen, H.T., Wei, L.Y., Chang, C.F.: Nonlinear revision control for images. ACM Trans. Graph. 30(4) (2011). https://doi.org/10.1145/2010324.1965000

  9. Chen, Y.S., Wang, Y.C., Kao, M.H., Chuang, Y.Y.: Deep photo enhancer: unpaired learning for image enhancement from photographs with GANs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6306–6314 (2018)

    Google Scholar 

  10. Deng, Y., Loy, C.C., Tang, X.: Aesthetic-driven image enhancement by adversarial learning. In: 2018 ACM Multimedia Conference on Multimedia Conference (MM), pp. 870–878. ACM (2018)

    Google Scholar 

  11. Gharbi, M., Chen, J., Barron, J.T., Hasinoff, S.W., Durand, F.: Deep bilateral learning for real-time image enhancement. ACM Trans. Graph. (TOG) 36(4), 118 (2017)

    Article  Google Scholar 

  12. Grabler, F., Agrawala, M., Li, W., Dontcheva, M., Igarashi, T.: Generating photo manipulation tutorials by demonstration. ACM Trans. Graph. 28(3) (2009). https://doi.org/10.1145/1531326.1531372

  13. Guo, C., et al.: Zero-reference deep curve estimation for low-light image enhancement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1780–1789 (2020)

    Google Scholar 

  14. He, J., Liu, Y., Qiao, Yu., Dong, C.: Conditional sequential modulation for efficient global image retouching. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 679–695. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_40

    Chapter  Google Scholar 

  15. Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., Meger, D.: Deep reinforcement learning that matters. In: Proceedings of the AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  16. Hu, Y., He, H., Xu, C., Wang, B., Lin, S.: Exposure: a white-box photo post-processing framework. ACM Trans. Graph. (TOG) 37(2), 1–17 (2018)

    Article  Google Scholar 

  17. Hwang, S.J., Kapoor, A., Kang, S.B.: Context-based automatic local image enhancement. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 569–582. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33718-5_41

    Chapter  Google Scholar 

  18. Ignatov, A., Kobyshev, N., Timofte, R., Vanhoey, K., Van Gool, L.: DSLR-quality photos on mobile devices with deep convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 3277–3285 (2017)

    Google Scholar 

  19. Ignatov, A., Kobyshev, N., Timofte, R., Vanhoey, K., Van Gool, L.: WESPE: weakly supervised photo enhancer for digital cameras. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 691–700 (2018)

    Google Scholar 

  20. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1125–1134 (2017)

    Google Scholar 

  21. Jiang, Y., et al.: EnlightenGAN: deep light enhancement without paired supervision. IEEE Trans. Image Process. (TIP) 30, 2340–2349 (2021)

    Article  Google Scholar 

  22. Jimenez Rezende, D., Eslami, S., Mohamed, S., Battaglia, P., Jaderberg, M., Heess, N.: Unsupervised learning of 3D structure from images. Adv. Neural. Inf. Process. Syst. 29, 4996–5004 (2016)

    Google Scholar 

  23. Kim, H.-U., Koh, Y.J., Kim, C.-S.: Global and local enhancement networks for paired and unpaired image enhancement. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 339–354. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_21

    Chapter  Google Scholar 

  24. Kim, H.-U., Koh, Y.J., Kim, C.-S.: PieNet: personalized image enhancement network. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 374–390. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_23

    Chapter  Google Scholar 

  25. Kim, H., Choi, S.M., Kim, C.S., Koh, Y.J.: Representative color transform for image enhancement. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4459–4468, October 2021

    Google Scholar 

  26. Kim, Y.T.: Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans. Consum. Electron. 43(1), 1–8 (1997)

    Article  Google Scholar 

  27. Kulkarni, T.D., Whitney, W., Kohli, P., Tenenbaum, J.B.: Deep convolutional inverse graphics network. arXiv preprint arXiv:1503.03167 (2015)

  28. Lee, C., Lee, C., Kim, C.S.: Contrast enhancement based on layered difference representation of 2D histograms. IEEE Trans. Image Process. 22(12), 5372–5384 (2013)

    Article  Google Scholar 

  29. Li, C., Guo, C., Ai, Q., Zhou, S., Loy, C.C.: Flexible piecewise curves estimation for photo enhancement (2020)

    Google Scholar 

  30. Liang, J., Zeng, H., Cui, M., Xie, X., Zhang, L.: Ppr10k: a large-scale portrait photo retouching dataset with human-region mask and group-level consistency. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 653–661, June 2021

    Google Scholar 

  31. Liang, J., Zeng, H., Zhang, L.: High-resolution photorealistic image translation in real-time: A laplacian pyramid translation network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  32. Liu, E., Li, S., Liu, S.: Color enhancement using global parameters and local features learning. In: Ishikawa, H., Liu, C.-L., Pajdla, T., Shi, J. (eds.) ACCV 2020. LNCS, vol. 12623, pp. 202–216. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69532-3_13

    Chapter  Google Scholar 

  33. Liu, Y., et al.: Very lightweight photo retouching network with conditional sequential modulation. CoRR abs/2104.06279 (2021). http://arxiv.org/abs/2104.06279

  34. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440 (2015)

    Google Scholar 

  35. Moran, S., Marza, P., McDonagh, S., Parisot, S., Slabaugh, G.: DeepLPF: deep local parametric filters for image enhancement. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12826–12835 (2020)

    Google Scholar 

  36. Moran, S., McDonagh, S., Slabaugh, G.: CURL: neural curve layers for global image enhancement. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 9796–9803. IEEE (2021)

    Google Scholar 

  37. Ni, Z., Yang, W., Wang, S., Ma, L., Kwong, S.: Towards unsupervised deep image enhancement with generative adversarial network. IEEE Trans. Image Process. (TIP) 29, 9140–9151 (2020)

    Article  MATH  Google Scholar 

  38. Park, J., Lee, J.Y., Yoo, D., So Kweon, I.: Distort-and-recover: color enhancement using deep reinforcement learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5928–5936 (2018)

    Google Scholar 

  39. Shi, J., Xu, N., Xu, Y., Bui, T., Dernoncourt, F., Xu, C.: Learning by planning: language-guided global image editing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13590–13599 (2021)

    Google Scholar 

  40. Stark, J.A.: Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans. Image Process. 9(5), 889–896 (2000)

    Article  Google Scholar 

  41. Wang, B., Yu, Y., Xu, Y.Q.: Example-based image color and tone style enhancement. ACM Trans. Graph. (TOG) 30(4), 1–12 (2011)

    Google Scholar 

  42. Wang, R., Zhang, Q., Fu, C.W., Shen, X., Zheng, W.S., Jia, J.: Underexposed photo enhancement using deep illumination estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6849–6857 (2019)

    Google Scholar 

  43. Wang, T., et al.: Real-time image enhancer via learnable spatial-aware 3D lookup tables. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2471–2480, October 2021

    Google Scholar 

  44. Wang, Y., Chen, Q., Zhang, B.: Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Trans. Consum. Electron. 45(1), 68–75 (1999)

    Article  Google Scholar 

  45. Yan, J., Lin, S., Bing Kang, S., Tang, X.: A learning-to-rank approach for image color enhancement. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2987–2994 (2014)

    Google Scholar 

  46. Yan, Z., Zhang, H., Wang, B., Paris, S., Yu, Y.: Automatic photo adjustment using deep neural networks. ACM Trans. Graph. (TOG) 35(2), 11 (2016)

    Article  Google Scholar 

  47. Ying, Z., Li, G., Ren, Y., Wang, R., Wang, W.: A new low-light image enhancement algorithm using camera response model. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (CVPRW), pp. 3015–3022 (2017)

    Google Scholar 

  48. Zamir, S.W., et al.: Learning enriched features for real image restoration and enhancement. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 492–511. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_30

    Chapter  Google Scholar 

  49. Zeng, H., Cai, J., Li, L., Cao, Z., Zhang, L.: Learning image-adaptive 3D lookup tables for high performance photo enhancement in real-time. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) (2020)

    Google Scholar 

  50. Zhao, L., Lu, S.P., Chen, T., Yang, Z., Shamir, A.: Deep symmetric network for underexposed image enhancement with recurrent attentional learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 12075–12084, October 2021

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Project Number: 61932003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Xu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 19392 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y. et al. (2022). Neural Color Operators for Sequential Image Retouching. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13679. Springer, Cham. https://doi.org/10.1007/978-3-031-19800-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19800-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19799-4

  • Online ISBN: 978-3-031-19800-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics