Skip to main content

RRSR:Reciprocal Reference-Based Image Super-Resolution with Progressive Feature Alignment and Selection

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13679))

Included in the following conference series:

Abstract

Reference-based image super-resolution (RefSR) is a promising SR branch and has shown great potential in overcoming the limitations of single image super-resolution. While previous state-of-the-art RefSR methods mainly focus on improving the efficacy and robustness of reference feature transfer, it is generally overlooked that a well reconstructed SR image should enable better SR reconstruction for its similar LR images when it is referred to as. Therefore, in this work, we propose a reciprocal learning framework that can appropriately leverage such a fact to reinforce the learning of a RefSR network. Besides, we deliberately design a progressive feature alignment and selection module for further improving the RefSR task. The newly proposed module aligns reference-input images at multi-scale feature spaces and performs reference-aware feature selection in a progressive manner, thus more precise reference features can be transferred into the input features and the network capability is enhanced. Our reciprocal learning paradigm is model-agnostic and it can be applied to arbitrary RefSR models. We empirically show that multiple recent state-of-the-art RefSR models can be consistently improved with our reciprocal learning paradigm. Furthermore, our proposed model together with the reciprocal learning strategy sets new state-of-the-art performances on multiple benchmarks.

L. Zhang and X. Li—Joint First Authors.

Work done during an internship at Baidu Inc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dai, T., Cai, J., Zhang, Y., Xia, S.T., Zhang, L.: Second-order attention network for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  2. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  3. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems (NeurIPS) (2014)

    Google Scholar 

  4. Greenspan, H.: Super-resolution in medical imaging. Comput. J. 52(1), 43–63 (2009)

    Article  Google Scholar 

  5. Ha, D., Dai, A., Le, Q.V.: Hypernetworks. In: International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  6. He, D., et al.: Dual learning for machine translation. In: Advances in Neural Information Processing Systems (NeurIPS) (2016)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  8. Holden, S.J., Uphoff, S., Kapanidis, A.N.: Daostorm: an algorithm for high-density super-resolution microscopy. Nat. Meth. 8(4), 279–280 (2011)

    Article  Google Scholar 

  9. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  10. Hu, X., Mu, H., Zhang, X., Wang, Z., Tan, T., Sun, J.: Meta-sr: a magnification-arbitrary network for super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  11. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  12. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the International Conference on Machine Learning (ICML) (2015)

    Google Scholar 

  13. Jia, X., De Brabandere, B., Tuytelaars, T., Gool, L.V.: Dynamic filter networks. In: Advances in Neural Information Processing Systems (NeurIPS) (2016)

    Google Scholar 

  14. Jiang, H., et al.: Reciprocal feature learning via explicit and implicit tasks in scene text recognition. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12821, pp. 287–303. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86549-8_19

    Chapter  Google Scholar 

  15. Jiang, Y., Chan, K.C., Wang, X., Loy, C.C., Liu, Z.: Robust reference-based super-resolution via c2-matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  16. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  17. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  18. Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2017)

    Google Scholar 

  19. Liu, D., Wen, B., Fan, Y., Loy, C.C., Huang, T.S.: Non-local recurrent network for image restoration. In: Advances in Neural Information Processing Systems (NeurIPS) (2018)

    Google Scholar 

  20. Lu, L., Li, W., Tao, X., Lu, J., Jia, J.: Masa-sr: matching acceleration and spatial adaptation for reference-based image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  21. Ma, N., Zhang, X., Huang, J., Sun, J.: WeightNet: revisiting the design space of weight networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 776–792. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_46

    Chapter  Google Scholar 

  22. Matsui, Y., et al.: Sketch-based manga retrieval using manga109 dataset. Multimedia Tools Appl. 76(20), 21811–21838 (2016). https://doi.org/10.1007/s11042-016-4020-z

    Article  Google Scholar 

  23. Mei, Y., Fan, Y., Zhou, Y.: Image super-resolution with non-local sparse attention. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  24. Mei, Y., Fan, Y., Zhou, Y., Huang, L., Huang, T.S., Shi, H.: Image super-resolution with cross-scale non-local attention and exhaustive self-exemplars mining. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  25. Mildenhall, B., Barron, J.T., Chen, J., Sharlet, D., Ng, R., Carroll, R.: Burst denoising with kernel prediction networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  26. Pham, H., Dai, Z., Xie, Q., Le, Q.V.: Meta pseudo labels. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  27. Sajjadi, M.S., Scholkopf, B., Hirsch, M.: Enhancenet: single image super-resolution through automated texture synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  28. Shim, G., Park, J., Kweon, I.S.: Robust reference-based super-resolution with similarity-aware deformable convolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  30. Sitzmann, V., Zollhöfer, M., Wetzstein, G.: Scene representation networks: continuous 3d-structure-aware neural scene representations. In: Advances in Neural Information Processing Systems (NeurIPS) (2019)

    Google Scholar 

  31. Sun, H., Zhao, Z., He, Z.: Reciprocal learning networks for human trajectory prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  32. Sun, L., Hays, J.: Super-resolution from internet-scale scene matching. In: IEEE International Conference on Computational Photography (ICCP) (2012)

    Google Scholar 

  33. Tian, Z., Shen, C., Chen, H.: Conditional convolutions for instance segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 282–298. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_17

    Chapter  Google Scholar 

  34. Wang, L., Wang, Y., Lin, Z., Yang, J., An, W., Guo, Y.: Learning a single network for scale-arbitrary super-resolution. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  35. Wang, T., Xie, J., Sun, W., Yan, Q., Chen, Q.: Dual-camera super-resolution with aligned attention modules. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  36. Wang, X., et al.: Esrgan: enhanced super-resolution generative adversarial networks. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018)

    Google Scholar 

  37. Wang, Y., Lin, Z., Shen, X., Mech, R., Miller, G., Cottrell, G.W.: Event-specific image importance. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  38. Xia, Z., Perazzi, F., Gharbi, M., Sunkavalli, K., Chakrabarti, A.: Basis prediction networks for effective burst denoising with large kernels. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  39. Yang, B., Bender, G., Le, Q.V., Ngiam, J.: Condconv: conditionally parameterized convolutions for efficient inference. In: Advances in Neural Information Processing Systems (NeurIPS) (2019)

    Google Scholar 

  40. Yang, F., Yang, H., Fu, J., Lu, H., Guo, B.: Learning texture transformer network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  41. Yi, Z., Zhang, H., Tan, P., Gong, M.: Dualgan: unsupervised dual learning for image-to-image translation. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  42. Yue, H., Sun, X., Yang, J., Wu, F.: Landmark image super-resolution by retrieving web images. IEEE Trans. Image Proc. (TIP) 22(12), 4865–4878 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zagalsky, A., et al.: The design of reciprocal learning between human and artificial intelligence. In: Proceedings of the ACM on Human-Computer Interaction (2021)

    Google Scholar 

  44. Zhang, L., Zhang, H., Shen, H., Li, P.: A super-resolution reconstruction algorithm for surveillance images. Sig. Proc. 90(3), 848–859 (2010)

    Article  MATH  Google Scholar 

  45. Zhang, W., Liu, Y., Dong, C., Qiao, Y.: Ranksrgan: generative adversarial networks with ranker for image super-resolution. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  46. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  47. Zhang, Y., Li, K., Li, K., Zhong, B., Fu, Y.: Residual non-local attention networks for image restoration. In: International Conference on Learning Representations (ICLR) (2019)

    Google Scholar 

  48. Zhang, Z., Wang, Z., Lin, Z., Qi, H.: Image super-resolution by neural texture transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  49. Zheng, H., Ji, M., Wang, H., Liu, Y., Fang, L.: Crossnet: an end-to-end reference-based super resolution network using cross-scale warping. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

Download references

Acknowledgements

We thank Qing Chang, He Zheng, and anonymous reviewers for helpful discussions. This work was supported in part by the Major Project for New Generation of AI (No. 2018AAA0100400), the National Natural Science Foundation of China (No. 61836014, No. U21B2042, No. 62072457, No. 62006231) and in part by the Baidu Collaborative Research Project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongliang He or Zhaoxiang Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 16726 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, L., Li, X., He, D., Li, F., Wang, Y., Zhang, Z. (2022). RRSR:Reciprocal Reference-Based Image Super-Resolution with Progressive Feature Alignment and Selection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13679. Springer, Cham. https://doi.org/10.1007/978-3-031-19800-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19800-7_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19799-4

  • Online ISBN: 978-3-031-19800-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics