Skip to main content

Content-Oriented Learned Image Compression

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13679))

Included in the following conference series:

Abstract

In recent years, with the development of deep neural networks, end-to-end optimized image compression has made significant progress and exceeded the classic methods in terms of rate-distortion performance. However, most learning-based image compression methods are unlabeled and do not consider image semantics or content when optimizing the model. In fact, human eyes have different sensitivities to different content, so the image content also needs to be considered. In this paper, we propose a content-oriented image compression method, which handles different kinds of image contents with different strategies. Extensive experiments show that the proposed method achieves competitive subjective results compared with state-of-the-art end-to-end learned image compression methods or classic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agustsson, E., Tschannen, M., Mentzer, F., Timofte, R., Van Gool, L.: Generative adversarial networks for extreme learned image compression. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 221–231 (2019). https://doi.org/10.1109/ICCV.2019.00031

  2. Akutsu, H., Suzuki, A., Zhong, Z., Aizawa, K.: Ultra low bitrate learned image compression by selective detail decoding. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 524–528 (2020). https://doi.org/10.1109/CVPRW50498.2020.00067

  3. Ballé, J., Laparra, V., Simoncelli, E.: End-to-end optimized image compression. In: Proceedings of the International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  4. Ballé, J., Minnen, D., Singh, S., Hwang, S., Johnston, N.: Variational image compression with a scale hyperprior. In: Proceedings of the International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  5. Blau, Y., Michaeli, T.: Rethinking lossy compression: the rate-distortion-perception tradeoff. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning, vol. 97, pp. 675–685 (2019)

    Google Scholar 

  6. BPG: Bpg image format (2014). https://bellard.org/bpg/. Accessed 7 Mar 2022

  7. Cai, C., Chen, L., Zhang, X., Gao, Z.: End-to-end optimized ROI image compression. IEEE Trans. Image Process. 29, 3442–3457 (2020). https://doi.org/10.1109/TIP.2019.2960869

    Article  MATH  Google Scholar 

  8. Chen, W., Huang, H., Peng, S., Zhou, C., Zhang, C.: YOLO-face: a real-time face detector. Vis. Comput. 37(4), 805–813 (2020). https://doi.org/10.1007/s00371-020-01831-7

    Article  Google Scholar 

  9. Cui, Z., Wang, J., Gao, S., Guo, T., Feng, Y., Bai, B.: Asymmetric gained deep image compression with continuous rate adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10532–10541 (2021)

    Google Scholar 

  10. Dash, S., Kumaravelu, G., Naganoor, V., Raman, S.K., Ramesh, A., Lee, H.: Compressnet: Generative compression at extremely low bitrates. In: 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 2314–2322 (2020). https://doi.org/10.1109/WACV45572.2020.9093415

  11. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1026–1034 (2015). https://doi.org/10.1109/ICCV.2015.123

  12. Hongyang, G., Hao, Y., Zhengyang, W., Shuiwang, J.: Pixel deconvolutional networks. In: Proceedings of the International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  13. Jolicoeur-Martineau, A.: The relativistic discriminator: a key element missing from standard gan. In: Proceedings of the International Conference on Learning Representations (ICLR) (2019)

    Google Scholar 

  14. Kodak, E.: Kodak lossless true color image suite: photocd pcd0992 (1993). http://r0k.us/graphics/kodak/. Accessed 7 Mar 2022

    Google Scholar 

  15. Lee, J., Cho, S., Beack, S.K.: Context-adaptive entropy model for end-to-end optimized image compression. In: Proceedings of the International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  16. Li, C., Wand, M.: Precomputed real-time texture synthesis with markovian generative adversarial networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 702–716. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_43

    Chapter  Google Scholar 

  17. Li, M., Zuo, W., Gu, S., Zhao, D., Zhang, D.: Learning convolutional networks for content-weighted image compression. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3214–3223 (2018). https://doi.org/10.1109/CVPR.2018.00339

  18. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  19. Ma, C., Rao, Y., Cheng, Y., Chen, C., Lu, J., Zhou, J.: Structure-preserving super resolution with gradient guidance, pp. 7766–7775 (2020). https://doi.org/10.1109/CVPR42600.2020.00779

  20. Mentzer, F., Toderici, G., Tschannen, M., Agustsson, E.: High-fidelity generative image compression. In: Advances in Neural Information Processing Systems (NeurIPS) (2020)

    Google Scholar 

  21. Minnen, D., Ballé, J., Toderici, G.: Joint autoregressive and hierarchical priors for learned image compression. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp. 10794–10803 (2018)

    Google Scholar 

  22. Rippel, O., Bourdev, L.: Real-time adaptive image compression. In: Proceedings of the 34th International Conference on Machine Learning, vol. 70, pp. 2922–2930. PMLR (2017)

    Google Scholar 

  23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (2015)

    Google Scholar 

  24. David, S.T.: Jpeg 2000: image compression fundamentals, standards and practice. J. Electron. Imaging 11(2), 286 (2002)

    Article  Google Scholar 

  25. Wallace, G.: The jpeg still picture compression standard. IEEE Trans. Consum. Electron. 38(1), 18–34 (1992). https://doi.org/10.1109/30.125072

    Article  Google Scholar 

  26. Wang, X., et al.: Esrgan: enhanced super-resolution generative adversarial networks. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018)

    Google Scholar 

  27. Wang, Z., Simoncelli, E., Bovik, A.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems Computers, 2003, vol. 2, pp. 1398–1402 (2003). https://doi.org/10.1109/ACSSC.2003.1292216

  28. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  29. Zhang, X., Wu, X.: Attention-guided image compression by deep reconstruction of compressive sensed saliency skeleton. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13354–13364 (2021)

    Google Scholar 

  30. Zhang, Y., Li, K., Li, K., Zhong, B., Fu, Y.R.: Residual non-local attention networks for image restoration. ArXiv abs/1903.10082 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, M., Gao, S., Feng, Y., Shi, Y., Wang, J. (2022). Content-Oriented Learned Image Compression. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13679. Springer, Cham. https://doi.org/10.1007/978-3-031-19800-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19800-7_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19799-4

  • Online ISBN: 978-3-031-19800-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics