Skip to main content

Animation from Blur: Multi-modal Blur Decomposition with Motion Guidance

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13679))

Included in the following conference series:

Abstract

We study the challenging problem of recovering detailed motion from a single motion-blurred image. Existing solutions to this problem estimate a single image sequence without considering the motion ambiguity for each region. Therefore, the results tend to converge to the mean of the multi-modal possibilities. In this paper, we explicitly account for such motion ambiguity, allowing us to generate multiple plausible solutions all in sharp detail. The key idea is to introduce a motion guidance representation, which is a compact quantization of 2D optical flow with only four discrete motion directions. Conditioned on the motion guidance, the blur decomposition is led to a specific, unambiguous solution by using a novel two-stage decomposition network. We propose a unified framework for blur decomposition, which supports various interfaces for generating our motion guidance, including human input, motion information from adjacent video frames, and learning from a video dataset. Extensive experiments on synthesized datasets and real-world data show that the proposed framework is qualitatively and quantitatively superior to previous methods, and also offers the merit of producing physically plausible and diverse solutions. Code is available at https://github.com/zzh-tech/Animation-from-Blur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Argaw, D.M., Kim, J., Rameau, F., Kweon, I.S.: Motion-blurred video interpolation and extrapolation. In: AAAI Conference on Artificial Intelligence (2021)

    Google Scholar 

  2. Argaw, D.M., Kim, J., Rameau, F., Zhang, C., Kweon, I.S.: Restoration of video frames from a single blurred image with motion understanding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 701–710 (2021)

    Google Scholar 

  3. Chan, T.F., Wong, C.K.: Total variation blind deconvolution. IEEE Trans. Image Process. 7(3), 370–375 (1998)

    Article  Google Scholar 

  4. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Infogan: Interpretable representation learning by information maximizing generative adversarial nets. In: Proceedings of the 30th International Conference on Neural Information Processing Systems. pp. 2180–2188 (2016)

    Google Scholar 

  5. Endo, Y., Kanamori, Y., Kuriyama, S.: Animating landscape: self-supervised learning of decoupled motion and appearance for single-image video synthesis. arXiv preprint arXiv:1910.07192 (2019)

  6. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  7. Holynski, A., Curless, B.L., Seitz, S.M., Szeliski, R.: Animating pictures with Eulerian motion fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5810–5819 (2021)

    Google Scholar 

  8. Huang, Z., Zhang, T., Heng, W., Shi, B., Zhou, S.: Rife: real-time intermediate flow estimation for video frame interpolation. arXiv preprint arXiv:2011.06294 (2020)

  9. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  10. Jin, M., Hu, Z., Favaro, P.: Learning to extract flawless slow motion from blurry videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8112–8121 (2019)

    Google Scholar 

  11. Jin, M., Meishvili, G., Favaro, P.: Learning to extract a video sequence from a single motion-blurred image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6334–6342 (2018)

    Google Scholar 

  12. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)

    Google Scholar 

  13. Kim, T.H., Lee, K.M., Scholkopf, B., Hirsch, M.: Online video deblurring via dynamic temporal blending network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4038–4047 (2017)

    Google Scholar 

  14. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  15. Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-Laplacian priors. Adv. Neural. Inf. Process. Syst. 22, 1033–1041 (2009)

    Google Scholar 

  16. Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: Deblurgan: Blind motion deblurring using conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8183–8192 (2018)

    Google Scholar 

  17. Kupyn, O., Martyniuk, T., Wu, J., Wang, Z.: Deblurgan-v2: deblurring (orders-of-magnitude) faster and better. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8878–8887 (2019)

    Google Scholar 

  18. Larsen, A.B.L., Sønderby, S.K., Larochelle, H., Winther, O.: Autoencoding beyond pixels using a learned similarity metric. In: International Conference on Machine Learning, pp. 1558–1566. PMLR (2016)

    Google Scholar 

  19. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding and evaluating blind deconvolution algorithms. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1964–1971. IEEE (2009)

    Google Scholar 

  20. Li, R., Yang, S., Ross, D.A., Kanazawa, A.: AI choreographer: music conditioned 3D dance generation with AIST++. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13401–13412 (2021)

    Google Scholar 

  21. Lin, S., et al.: Learning event-driven video deblurring and interpolation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 695–710. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_41

    Chapter  Google Scholar 

  22. Nah, S., et al.: Ntire 2019 challenge on video deblurring and super-resolution: dataset and study. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  23. Nah, S., Kim, T.H., Lee, K.M.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3883–3891 (2017)

    Google Scholar 

  24. Nah, S., Son, S., Lee, K.M.: Recurrent neural networks with intra-frame iterations for video deblurring. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8102–8111 (2019)

    Google Scholar 

  25. Pan, L., Scheerlinck, C., Yu, X., Hartley, R., Liu, M., Dai, Y.: Bringing a blurry frame alive at high frame-rate with an event camera. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6820–6829 (2019)

    Google Scholar 

  26. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2337–2346 (2019)

    Google Scholar 

  27. Purohit, K., Shah, A., Rajagopalan, A.: Bringing alive blurred moments. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6830–6839 (2019)

    Google Scholar 

  28. Rozumnyi, D., Oswald, M.R., Ferrari, V., Matas, J., Pollefeys, M.: DeFMO: deblurring and shape recovery of fast moving objects. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3456–3465 (2021)

    Google Scholar 

  29. Shen, W., Bao, W., Zhai, G., Chen, L., Min, X., Gao, Z.: Blurry video frame interpolation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5114–5123 (2020)

    Google Scholar 

  30. Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. Adv. Neural. Inf. Process. Syst. 28, 3483–3491 (2015)

    Google Scholar 

  31. Su, S., Delbracio, M., Wang, J., Sapiro, G., Heidrich, W., Wang, O.: Deep video deblurring for hand-held cameras. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1279–1288 (2017)

    Google Scholar 

  32. Tao, X., Gao, H., Shen, X., Wang, J., Jia, J.: Scale-recurrent network for deep image deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8174–8182 (2018)

    Google Scholar 

  33. Teed, Z., Deng, J.: RAFT: recurrent all-pairs field transforms for optical flow. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 402–419. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_24

    Chapter  Google Scholar 

  34. Wang, X., Chan, K.C., Yu, K., Dong, C., Change Loy, C.: EDVR: video restoration with enhanced deformable convolutional networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  35. Wieschollek, P., Hirsch, M., Scholkopf, B., Lensch, H.: Learning blind motion deblurring. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 231–240 (2017)

    Google Scholar 

  36. Xu, L., Zheng, S., Jia, J.: Unnatural l0 sparse representation for natural image deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1107–1114 (2013)

    Google Scholar 

  37. Xue, T., Wu, J., Bouman, K.L., Freeman, W.T.: Visual dynamics: probabilistic future frame synthesis via cross convolutional networks. arXiv preprint arXiv:1607.02586 (2016)

  38. Zhang, H., Dai, Y., Li, H., Koniusz, P.: Deep stacked hierarchical multi-patch network for image deblurring. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5978–5986 (2019)

    Google Scholar 

  39. Zhang, J., et al.: DTVNet: dynamic time-lapse video generation via single still image. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 300–315. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_18

    Chapter  Google Scholar 

  40. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  41. Zhong, Z., Gao, Y., Zheng, Y., Zheng, B.: Efficient spatio-temporal recurrent neural network for video deblurring. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 191–207. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_12

    Chapter  Google Scholar 

  42. Zhou, S., Zhang, J., Pan, J., Xie, H., Zuo, W., Ren, J.: Spatio-temporal filter adaptive network for video deblurring. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2482–2491 (2019)

    Google Scholar 

  43. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

  44. Zhu, J.Y., et al.: Multimodal image-to-image translation by enforcing bi-cycle consistency. In: Advances in Neural Information Processing Systems, pp. 465–476 (2017)

    Google Scholar 

Download references

Acknowledgement

This work was supported by D-CORE Grant from Microsoft Research Asia, JSPS KAKENHI Grant Numbers 22H00529, and 20H05951, and JST, the establishment of university fellowships towards the creation of science technology innovation, Grant Number JPMJFS2108.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinqiang Zheng .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 9177 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhong, Z., Sun, X., Wu, Z., Zheng, Y., Lin, S., Sato, I. (2022). Animation from Blur: Multi-modal Blur Decomposition with Motion Guidance. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13679. Springer, Cham. https://doi.org/10.1007/978-3-031-19800-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19800-7_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19799-4

  • Online ISBN: 978-3-031-19800-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics