Skip to main content

Rethinking Video Rain Streak Removal: A New Synthesis Model and a Deraining Network with Video Rain Prior

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13679))

Included in the following conference series:

Abstract

Existing video synthetic models and deraining methods are mostly built on a simplified video rain model assuming that rain streak layers of different video frames are uncorrelated, thereby producing degraded performance on real-world rainy videos. To address this problem, we devise a new video rain sy nthesis model with the concept of rain streak motions to enforce a consistency of rain layers between video frames, thereby generating more realistic rainy video data for network training, and then develop a recurrent disentangled deraining network (RDD-Net) based on our video rain model for boosting video deraining. More specifically, taking adjacent frames of a key frame as the input, our RDD-Net recurrently aggregates each adjacent frame and the key frame by a fusion module, and then devise a disentangle model to decouple the fused features by predicting not only a clean background layer and a rain layer, but also a rain streak motion layer. After that, we develop three attentive recovery modules to combine the decoupled features from different adjacent frames for predicting the final derained result of the key frame. Experiments on three widely-used benchmark datasets and a collected dataset, as well as real-world rainy videos show that our RDD-Net quantitatively and qualitatively outperforms state-of-the-art deraining methods. Our code, our dataset, and our results on four datasets are released at https://github.com/wangshauitj/RDD-Net.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barnum, P.C., Narasimhan, S., Kanade, T.: Analysis of rain and snow in frequency space. IJCV 86(2–3), 256–274 (2010)

    Article  Google Scholar 

  2. Bossu, J., Hautière, N., Tarel, J.P.: Rain or snow detection in image sequences through use of a histogram of orientation of streaks. IJCV 93(3), 348–367 (2011)

    Article  Google Scholar 

  3. Brewer, N., Liu, N.: Using the shape characteristics of rain to identify and remove rain from video. In: da Vitoria Lobo, N., et al. (eds.) SSPR /SPR 2008. LNCS, vol. 5342, pp. 451–458. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89689-0_49

    Chapter  Google Scholar 

  4. Chen, J., Chau, L.P.: A rain pixel recovery algorithm for videos with highly dynamic scenes. IEEE TIP 23(3), 1097–1104 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Chen, J., Tan, C.H., Hou, J., Chau, L.P., Li, H.: Robust video content alignment and compensation for rain removal in a CNN framework. In: CVPR, pp. 6286–6295 (2018)

    Google Scholar 

  6. Chen, Y.L., Hsu, C.T.: A generalized low-rank appearance model for spatio-temporally correlated rain streaks. In: ICCV, pp. 1968–1975 (2013)

    Google Scholar 

  7. Fu, X., Huang, J., Ding, X., Liao, Y., Paisley, J.: Clearing the skies: a deep network architecture for single-image rain removal. IEEE TIP 26(6), 2944–2956 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Fu, X., Huang, J., Zeng, D., Huang, Y., Ding, X., Paisley, J.: Removing rain from single images via a deep detail network. In: CVPR, pp. 3855–3863 (2017)

    Google Scholar 

  9. Garg, K., Nayar, S.K.: Detection and removal of rain from videos. In: CVPR, pp. 528–535 (2004)

    Google Scholar 

  10. Garg, K., Nayar, S.K.: Photorealistic rendering of rain streaks. ACM Trans. Graph. (TOG) 25(3), 996–1002 (2006)

    Article  Google Scholar 

  11. Haris, M., Shakhnarovich, G., Ukita, N.: Recurrent back-projection network for video super-resolution. In: CVPR (2019)

    Google Scholar 

  12. Huang, D.A., Kang, L.W., Wang, Y.C.F., Lin, C.W.: Self-learning based image decomposition with applications to single image denoising. IEEE Trans. Multimed. 16(1), 83–93 (2014)

    Article  Google Scholar 

  13. Jiang, K., et al.: Multi-scale progressive fusion network for single image deraining. In: CVPR, pp. 8346–8355 (2020)

    Google Scholar 

  14. Jiang, T.X., Huang, T.Z., Zhao, X.L., Deng, L.J., Wang, Y.: A novel tensor-based video rain streaks removal approach via utilizing discriminatively intrinsic priors. In: CVPR, pp. 4057–4066 (2017)

    Google Scholar 

  15. Jiang, T.X., Huang, T.Z., Zhao, X.L., Deng, L.J., Wang, Y.: FastDeRain: a novel video rain streak removal method using directional gradient priors. IEEE TIP 28(4), 2089–2102 (2018)

    MathSciNet  Google Scholar 

  16. Kang, L.W., Lin, C.W., Fu, Y.H.: Automatic single-image-based rain streaks removal via image decomposition. IEEE TIP 21(4), 1742–1755 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Kim, J.H., Sim, J.Y., Kim, C.S.: Video deraining and desnowing using temporal correlation and low-rank matrix completion. IEEE TIP 24(9), 2658–2670 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Li, G., He, X., Zhang, W., Chang, H., Dong, L., Lin, L.: Non-locally enhanced encoder-decoder network for single image de-raining. In: ACM Multimedia, pp. 1056–1064 (2018)

    Google Scholar 

  19. Li, M., et al.: Video rain streak removal by multiscale convolutional sparse coding. In: CVPR, pp. 6644–6653 (2018)

    Google Scholar 

  20. Li, X., Wu, J., Lin, Z., Liu, H., Zha, H.: Recurrent squeeze-and-excitation context aggregation net for single image deraining. In: ECCV, pp. 254–269 (2018)

    Google Scholar 

  21. Li, Y., Tan, R.T., Guo, X., Lu, J., Brown, M.S.: Rain streak removal using layer priors. In: CVPR, pp. 2736–2744 (2016)

    Google Scholar 

  22. Liu, J., Yang, W., Yang, S., Guo, Z.: D3R-Net: dynamic routing residue recurrent network for video rain removal. IEEE TIP 28(2), 699–712 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Liu, J., Yang, W., Yang, S., Guo, Z.: Erase or fill? Deep joint recurrent rain removal and reconstruction in videos. In: CVPR, pp. 3233–3242 (2018)

    Google Scholar 

  24. Liu, P., Xu, J., Liu, J., Tang, X.: Pixel based temporal analysis using chromatic property for removing rain from videos. Comput. Inf. Sci. 2(1), 53–60 (2009)

    Google Scholar 

  25. Luo, Y., Xu, Y., Ji, H.: Removing rain from a single image via discriminative sparse coding. In: ICCV, pp. 3397–3405 (2015)

    Google Scholar 

  26. Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: a better and simpler baseline. In: CVPR, pp. 3937–3946 (2019)

    Google Scholar 

  27. Ren, W., Tian, J., Han, Z., Chan, A., Tang, Y.: Video desnowing and deraining based on matrix decomposition. In: CVPR, pp. 4210–4219 (2017)

    Google Scholar 

  28. Santhaseelan, V., Asari, V.K.: Utilizing local phase information to remove rain from video. IJCV 112(1), 71–89 (2015)

    Article  Google Scholar 

  29. Sun, S.H., Fan, S.P., Wang, Y.C.F.: Exploiting image structural similarity for single image rain removal. In: IEEE ICIP, pp. 4482–4486 (2014)

    Google Scholar 

  30. Tripathi, A.K., Mukhopadhyay, S.: A probabilistic approach for detection and removal of rain from videos. IETE J. Res. 57(1), 82–91 (2011)

    Article  Google Scholar 

  31. Tripathi, A., Mukhopadhyay, S.: Video post processing: low-latency spatiotemporal approach for detection and removal of rain. IET Image Proc. 6(2), 181–196 (2012)

    Article  MathSciNet  Google Scholar 

  32. Wang, C., Xing, X., Wu, Y., Su, Z., Chen, J.: DCSFN: deep cross-scale fusion network for single image rain removal. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 1643–1651 (2020)

    Google Scholar 

  33. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE TIP 13(4), 600–612 (2004)

    Google Scholar 

  34. Wei, W., Yi, L., Xie, Q., Zhao, Q., Meng, D., Xu, Z.: Should we encode rain streaks in video as deterministic or stochastic? In: ICCV, pp. 2516–2525 (2017)

    Google Scholar 

  35. Yan, W., Tan, R.T., Yang, W., Dai, D.: Self-aligned video deraining with transmission-depth consistency. In: CVPR, pp. 11966–11976 (2021)

    Google Scholar 

  36. Yang, W., Liu, J., Feng, J.: Frame-consistent recurrent video deraining with dual-level flow. In: CVPR, pp. 1661–1670 (2019)

    Google Scholar 

  37. Yang, W., Tan, R.T., Feng, J., Liu, J., Guo, Z., Yan, S.: Joint rain detection and removal from a single image. In: CVPR, pp. 1685–1694 (2017)

    Google Scholar 

  38. Yang, W., Tan, R.T., Wang, S., Liu, J.: Self-learning video rain streak removal: when cyclic consistency meets temporal correspondence. In: CVPR, pp. 1720–1729 (2020)

    Google Scholar 

  39. Yue, Z., Xie, J., Zhao, Q., Meng, D.: Semi-supervised video deraining with dynamical rain generator. In: CVPR, pp. 642–652 (2021)

    Google Scholar 

  40. Zamir, S.W., et al.: Multi-stage progressive image restoration. In: CVPR (2021)

    Google Scholar 

  41. Zhang, H., Patel, V.M.: Density-aware single image de-raining using a multi-stream dense network. In: CVPR, pp. 695–704 (2018)

    Google Scholar 

  42. Zhang, X., Li, H., Qi, Y., Leow, W.K., Ng, T.K.: Rain removal in video by combining temporal and chromatic properties. In: IEEE International Conference on Multimedia and Expo, pp. 461–464 (2006)

    Google Scholar 

  43. Zhu, L., et al.: Learning gated non-local residual for single-image rain streak removal. IEEE Trans. Circuits Syst. Video Technol. 31(6), 2147–2159 (2020)

    Article  Google Scholar 

  44. Zhu, L., Fu, C.W., Lischinski, D., Heng, P.A.: Joint bi-layer optimization for single-image rain streak removal. In: ICCV, pp. 2526–2534 (2017)

    Google Scholar 

Download references

Acknowledgement

The work is supported by the National Natural Science Foundation of China (Grant No. 61902275, NSFC-U1803264), and a grant of Hong Kong Research Grants Council under General Research Fund (no. 15205919).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, S. et al. (2022). Rethinking Video Rain Streak Removal: A New Synthesis Model and a Deraining Network with Video Rain Prior. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13679. Springer, Cham. https://doi.org/10.1007/978-3-031-19800-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19800-7_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19799-4

  • Online ISBN: 978-3-031-19800-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics