Skip to main content

Image Super-Resolution with Deep Dictionary

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13679))

Included in the following conference series:

Abstract

Since the first success of Dong et al., the deep-learning-based approach has become dominant in the field of single-image super-resolution. This replaces all the handcrafted image processing steps of traditional sparse-coding-based methods with a deep neural network. In contrast to sparse-coding-based methods, which explicitly create high/low-resolution dictionaries, the dictionaries in deep-learning-based methods are implicitly acquired as a nonlinear combination of multiple convolutions. One disadvantage of deep-learning-based methods is that their performance is degraded for images created differently from the training dataset (out-of-domain images). We propose an end-to-end super-resolution network with a deep dictionary (SRDD), where a high-resolution dictionary is explicitly learned without sacrificing the advantages of deep learning. Extensive experiments show that explicit learning of high-resolution dictionary makes the network more robust for out-of-domain test images while maintaining the performance of the in-domain test images. Code is available at https://github.com/shuntama/srdd.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahn, N., Kang, B., Sohn, K.-A.: Fast, accurate, and lightweight super-resolution with cascading residual network. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 256–272. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_16

    Chapter  Google Scholar 

  2. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: BMVC (2012)

    Google Scholar 

  3. Chan, K.C., Wang, X., Xu, X., Gu, J., Loy, C.C.: Glean: generative latent bank for large-factor image super-resolution. In: CVPR (2021)

    Google Scholar 

  4. Chang, H., Yeung, D.Y., Xiong, Y.: Super-resolution through neighbor embedding. In: CVPR (2004)

    Google Scholar 

  5. Chen, C., et al.: Real-world blind super-resolution via feature matching with implicit high-resolution priors. arXiv preprint arXiv:2202.13142 (2022)

  6. Chen, H., et al.: Pre-trained image processing transformer. In: CVPR (2021)

    Google Scholar 

  7. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  8. Dai, T., Cai, J., Zhang, Y., Xia, S.T., Zhang, L.: Second-order attention network for single image super-resolution. In: CVPR (2019)

    Google Scholar 

  9. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  10. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 391–407. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_25

    Chapter  Google Scholar 

  11. Freedman, G., Fattal, R.: Image and video upscaling from local self-examples. TOG 30(2), 1–11 (2011)

    Article  Google Scholar 

  12. Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. CG &A 22(2), 56–65 (2002)

    Google Scholar 

  13. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: ICCV (2009)

    Google Scholar 

  14. Gu, J., Lu, H., Zuo, W., Dong, C.: Blind super-resolution with iterative kernel correction. In: CVPR (2019)

    Google Scholar 

  15. Gu, S., Zuo, W., Xie, Q., Meng, D., Feng, X., Zhang, L.: Convolutional sparse coding for image super-resolution. In: ICCV (2015)

    Google Scholar 

  16. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: CVPR (2015)

    Google Scholar 

  17. Hui, Z., Gao, X., Yang, Y., Wang, X.: Lightweight image super-resolution with information multi-distillation network. In: ACM Multimedia (2019)

    Google Scholar 

  18. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML (2015)

    Google Scholar 

  19. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: CVPR (2016)

    Google Scholar 

  20. Kim, J., Lee, J.K., Lee, K.M.: Deeply-recursive convolutional network for image super-resolution. In: CVPR (2016)

    Google Scholar 

  21. Kim, K.I., Kwon, Y.: Single-image super-resolution using sparse regression and natural image prior. TPAMI 32(6), 1127–1133 (2010)

    Article  Google Scholar 

  22. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2014)

    Google Scholar 

  23. Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Deep Laplacian pyramid networks for fast and accurate super-resolution. In: CVPR (2017)

    Google Scholar 

  24. Li, H., Xiong, P., An, J., Wang, L.: Pyramid attention network for semantic segmentation. In: BMVC (2018)

    Google Scholar 

  25. Li, Y., et al.: NTIRE 2022 challenge on efficient super-resolution: methods and results. In: CVPRW (2022)

    Google Scholar 

  26. Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: SwinIR: image restoration using Swin transformer. In: ICCV (2021)

    Google Scholar 

  27. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: CVPRW (2017)

    Google Scholar 

  28. Luo, X., Xie, Y., Zhang, Y., Qu, Y., Li, C., Fu, Y.: LatticeNet: towards lightweight image super-resolution with Lattice Block. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 272–289. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_17

    Chapter  Google Scholar 

  29. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV (2001)

    Google Scholar 

  30. Matsui, Y., et al.: Sketch-based manga retrieval using manga109 dataset. Multimed. Tools App. 76(20), 21811–21838 (2017)

    Article  Google Scholar 

  31. Mei, Y., Fan, Y., Zhou, Y.: Image super-resolution with non-local sparse attention. In: CVPR (2021)

    Google Scholar 

  32. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “completely blind’’ image quality analyzer. Signal Process. Lett. 20(3), 209–212 (2012)

    Article  Google Scholar 

  33. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML (2010)

    Google Scholar 

  34. Niu, B., et al.: Single image super-resolution via a holistic attention network. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 191–207. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_12

    Chapter  Google Scholar 

  35. Osendorfer, C., Soyer, H., Smagt, P.: Image super-resolution with fast approximate convolutional sparse coding. In: ICONIP (2014)

    Google Scholar 

  36. Peters, B., Niculae, V., Martins, A.F.: Sparse sequence-to-sequence models. In: ACL (2019)

    Google Scholar 

  37. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: CVPR (2016)

    Google Scholar 

  38. Shocher, A., Cohen, N., Irani, M.: “zero-shot” super-resolution using deep internal learning. In: CVPR (2018)

    Google Scholar 

  39. Simon, D., Elad, M.: Rethinking the CSC model for natural images. In: NeurIPS (2019)

    Google Scholar 

  40. Soh, J.W., Cho, S., Cho, N.I.: Meta-transfer learning for zero-shot super-resolution. In: CVPR (2020)

    Google Scholar 

  41. Tai, Y., Yang, J., Liu, X.: Image super-resolution via deep recursive residual network. In: CVPR (2017)

    Google Scholar 

  42. Tai, Y., Yang, J., Liu, X., Xu, C.: MemNet: a persistent memory network for image restoration. In: ICCV (2017)

    Google Scholar 

  43. Timofte, R., Agustsson, E., Van Gool, L., Yang, M.H., Zhang, L.: NTIRE 2017 challenge on single image super-resolution: methods and results. In: CVPRW (2017)

    Google Scholar 

  44. Timofte, R., De Smet, V., Van Gool, L.: Anchored neighborhood regression for fast example-based super-resolution. In: ICCV (2013)

    Google Scholar 

  45. Timofte, R., De Smet, V., Van Gool, L.: A+: adjusted anchored neighborhood regression for fast super-resolution. In: ACCV (2014)

    Google Scholar 

  46. Wang, L., et al.: Unsupervised degradation representation learning for blind super-resolution. In: CVPR (2021)

    Google Scholar 

  47. Wang, Z., Liu, D., Yang, J., Han, W., Huang, T.: Deep networks for image super-resolution with sparse prior. In: ICCV (2015)

    Google Scholar 

  48. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. TIP 13(4), 600–612 (2004)

    Google Scholar 

  49. Xu, Y.S., Tseng, S.Y.R., Tseng, Y., Kuo, H.K., Tsai, Y.M.: Unified dynamic convolutional network for super-resolution with variational degradations. In: CVPR (2020)

    Google Scholar 

  50. Yang, J., Lin, Z., Cohen, S.: Fast image super-resolution based on in-place example regression. In: CVPR (2013)

    Google Scholar 

  51. Yang, J., Wang, Z., Lin, Z., Cohen, S., Huang, T.: Coupled dictionary training for image super-resolution. TIP 21(8), 3467–3478 (2012)

    MathSciNet  MATH  Google Scholar 

  52. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. TIP 19(11), 2861–2873 (2010)

    MathSciNet  MATH  Google Scholar 

  53. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Curves and Surfaces (2010)

    Google Scholar 

  54. Zhang, K., et al.: Aim 2020 challenge on efficient super-resolution: methods and results. In: ECCVW (2020)

    Google Scholar 

  55. Zhang, K., Zuo, W., Zhang, L.: Learning a single convolutional super-resolution network for multiple degradations. In: CVPR (2018)

    Google Scholar 

  56. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 294–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_18

    Chapter  Google Scholar 

  57. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: CVPR (2018)

    Google Scholar 

  58. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: CVPR (2017)

    Google Scholar 

  59. Zhou, R., Susstrunk, S.: Kernel modeling super-resolution on real low-resolution images. In: ICCV (2019)

    Google Scholar 

  60. Zhou, S., Chan, K.C., Li, C., Loy, C.C.: Towards robust blind face restoration with codebook lookup transformer. arXiv preprint arXiv:2206.11253 (2022)

  61. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested u-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

Download references

Acknowledgements

I thank Uday Bondi for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunta Maeda .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 156 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maeda, S. (2022). Image Super-Resolution with Deep Dictionary. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13679. Springer, Cham. https://doi.org/10.1007/978-3-031-19800-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19800-7_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19799-4

  • Online ISBN: 978-3-031-19800-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics