Abstract
Most of the currently existing vision and language pre-training (VLP) methods have mainly focused on how to extract and align vision and text features. In contrast to the mainstream VLP methods, we highlight that two routinely applied steps during pre-training have crucial impact on the performance of the pre-trained model: in-batch hard negative sampling for image-text matching (ITM) and assigning the large masking probability for the masked language modeling (MLM). After empirically showing the unexpected effectiveness of above two steps, we systematically devise our GRIT-VLP, which adaptively samples mini-batches for more effective mining of hard negative samples for ITM while maintaining the computational cost for pre-training. Our method consists of three components: 1) GRouped mIni-baTch sampling (GRIT) strategy that collects similar examples in a mini-batch, 2) ITC consistency loss for improving the mining ability, and 3) enlarged masking probability for MLM. Consequently, we show our GRIT-VLP achieves a new state-of-the-art performance on various downstream tasks with much less computational cost. Furthermore, we demonstrate that our model is essentially in par with ALBEF, the previous state-of-the-art, only with one-third of training epochs on the same training data. Code is available at https://github.com/jaeseokbyun/GRIT-VLP.
J. Byun and T. Hwang—Equal contribution. This work was performed when Jaeseok Byun did an internship at Microsoft Research Asia.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note the Momentum Distillation (MD), which utilizes the soft outputs from an additional momentum model is omitted, since we do NOT use the momentum model.
- 2.
We defer describing the detailed model architecture to Sect. 5.1.
References
Antol, S., et al.: VQA: visual question answering. In: ICCV (2015)
Bitton, Y., Stanovsky, G., Elhadad, M., Schwartz, R.: Data efficient masked language modeling for vision and language. arXiv preprint arXiv:2109.02040 (2021)
Chen, T.S., Hung, W.C., Tseng, H.Y., Chien, S.Y., Yang, M.H.: Incremental false negative detection for contrastive learning. arXiv preprint arXiv:2106.03719 (2021)
Chen, Y.-C., et al.: UNITER: UNiversal image-TExt representation learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 104–120. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_7
Chuang, C.Y., Robinson, J., Lin, Y.C., Torralba, A., Jegelka, S.: Debiased contrastive learning. In: NeurIPS (2020)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)
Do, V., Camburu, O.M., Akata, Z., Lukasiewicz, T.: e-SNLI-VE: Corrected visual-textual entailment with natural language explanations. arXiv preprint arXiv:2004.03744 (2020)
Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Gan, Z., Chen, Y.C., Li, L., Zhu, C., Cheng, Y., Liu, J.: Large-scale adversarial training for vision-and-language representation learning. In: NeurIPS (2020)
Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., Parikh, D.: Making the V in VQA matter: elevating the role of image understanding in visual question answering. In: CVPR (2017)
Harwood, B., Kumar BG, V., Carneiro, G., Reid, I., Drummond, T.: Smart mining for deep metric learning. In: ICCV (2017)
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR (2020)
Huang, Z., Zeng, Z., Huang, Y., Liu, B., Fu, D., Fu, J.: Seeing out of the box: End-to-end pre-training for vision-language representation learning. In: CVPR (2021)
Huang, Z., Zeng, Z., Liu, B., Fu, D., Fu, J.: Pixel-BERT: Aligning image pixels with text by deep multi-modal transformers. arXiv preprint arXiv:2004.00849 (2020)
Jia, C., et al.: Scaling up visual and vision-language representation learning with noisy text supervision. arXiv preprint arXiv:2102.05918 (2021)
Karpathy, A., Fei-Fei, L.: Deep visual-semantic alignments for generating image descriptions. In: CVPR (2015)
Kim, W., Son, B., Kim, I.: VILT: Vision-and-language transformer without convolution or region supervision. arXiv preprint arXiv:2102.03334 (2021)
Krishna, R., et al.: Visual Genome: Connecting Language and vision using crowdsourced dense image annotations. IJCV 123, 32–73 (2017)
Li, G., Duan, N., Fang, Y., Gong, M., Jiang, D.: Unicoder-VL: A universal encoder for vision and language by cross-modal pre-training. In: AAAI (2020)
Li, J., Selvaraju, R., Gotmare, A., Joty, S., Xiong, C., Hoi, S.C.H.: Align before fuse: Vision and language representation learning with momentum distillation. In: NeurIPS (2021)
Li, L.H., Yatskar, M., Yin, D., Hsieh, C.J., Chang, K.W.: VisualBERT: A simple and performant baseline for vision and language. arXiv preprint arXiv:1908.03557 (2019)
Li, X., et al.: Oscar: Object-semantics aligned pre-training for vision-language tasks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 121–137. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_8
Lin, T.-Y., et al.: Microsoft COCO: Common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Lu, J., Batra, D., Parikh, D., Lee, S.: VilBERT: Pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. arXiv preprint arXiv:1908.02265 (2019)
Ordonez, V., Kulkarni, G., Berg, T.: Im2text: Describing images using 1 million captioned photographs. In: NeurIPS (2011)
Plummer, B.A., Wang, L., Cervantes, C.M., Caicedo, J.C., Hockenmaier, J., Lazebnik, S.: Flickr30k entities: Collecting region-to-phrase correspondences for richer image-to-sentence models. In: ICCV (2015)
Radford, A., et al.: Learning transferable visual models from natural language supervision. arXiv preprint arXiv:2103.00020 (2021)
Robinson, J., Chuang, C.Y., Sra, S., Jegelka, S.: Contrastive learning with hard negative samples. arXiv preprint arXiv:2010.04592 (2020)
Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: A unified embedding for face recognition and clustering. In: CVPR (2015)
Sharma, P., Ding, N., Goodman, S., Soricut, R.: Conceptual captions: A cleaned, hypernymed, image alt-text dataset for automatic image captioning. In: ACL (2018)
Su, W., et al.: VL-BERT: Pre-training of generic visual-linguistic representations. arXiv preprint arXiv:1908.08530 (2019)
Suhr, A., Zhou, S., Zhang, A., Zhang, I., Bai, H., Artzi, Y.: A corpus for reasoning about natural language grounded in photographs. arXiv preprint arXiv:1811.00491 (2018)
Tan, H., Bansal, M.: LXMERT: Learning cross-modality encoder representations from transformers. arXiv preprint arXiv:1908.07490 (2019)
Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. In: ICML (2021)
Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)
Wang, X., Zhang, H., Huang, W., Scott, M.R.: Cross-batch memory for embedding learning. In: CVPR (2020)
Wettig, A., Gao, T., Zhong, Z., Chen, D.: Should you mask 15% in masked language modeling? arXiv preprint arXiv:2202.08005 (2022)
Wu, C.Y., Manmatha, R., Smola, A.J., Krahenbuhl, P.: Sampling matters in deep embedding learning. In: ICCV (2017)
Wu, M., Mosse, M., Zhuang, C., Yamins, D., Goodman, N.: Conditional negative sampling for contrastive learning of visual representations. arXiv preprint arXiv:2010.02037 (2020)
Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: CVPR (2018)
Xie, N., Lai, F., Doran, D., Kadav, A.: Visual entailment: A novel task for fine-grained image understanding. arXiv preprint arXiv:1901.06706 (2019)
Xuan, H., Stylianou, A., Liu, X., Pless, R.: Hard negative examples are hard, but useful. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 126–142. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_8
Xuan, H., Stylianou, A., Pless, R.: Improved embeddings with easy positive triplet mining. In: WACV (2020)
Xue, H., et al.: Probing inter-modality: Visual parsing with self-attention for vision-and-language pre-training. In: NeurIPS (2021)
Yang, J., et al.: Vision-language pre-training with triple contrastive learning. In: CVPR (2022)
Zolfaghari, M., Zhu, Y., Gehler, P., Brox, T.: CrossCLR: Cross-modal contrastive learning for multi-modal video representations. In: ICCV (2021)
Acknowledgment
This work was supported in part by New Faculty Startup Fund from Seoul National University, NRF Mid Career Research Program [NRF- 2021R1A2C2007884], IITP grants funded by the Korean government [No. 2021-0-01696], [No. 2021-0-01343, Artificial Intelligence Graduate School Program (Seoul National University)], [No. 2021-0-02068, Artificial Intelligence Innovation Hub (Artificial Intelligence Institute, Seoul National University)], [No.2022-0-00959] and SNU-NAVER Hyperscale AI Center.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Byun, J., Hwang, T., Fu, J., Moon, T. (2022). GRIT-VLP: Grouped Mini-batch Sampling for Efficient Vision and Language Pre-training. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13679. Springer, Cham. https://doi.org/10.1007/978-3-031-19800-7_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-19800-7_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19799-4
Online ISBN: 978-3-031-19800-7
eBook Packages: Computer ScienceComputer Science (R0)