Skip to main content

D2C-SR: A Divergence to Convergence Approach for Real-World Image Super-Resolution

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13679))

Included in the following conference series:


In this paper, we present D2C-SR, a novel framework for the task of real-world image super-resolution. As an ill-posed problem, the key challenge in super-resolution related tasks is there can be multiple predictions for a given low-resolution input. Most classical deep learning based approaches ignored the fundamental fact and lack explicit modeling of the underlying high-frequency distribution which leads to blurred results. Recently, some methods of GAN-based or learning super-resolution space can generate simulated textures but do not promise the accuracy of the textures which have low quantitative performance. Rethinking both, we learn the distribution of underlying high-frequency details in a discrete form and propose a two-stage pipeline: divergence stage to convergence stage. At divergence stage, we propose a tree-based structure deep network as our divergence backbone. Divergence loss is proposed to encourage the generated results from the tree-based network to diverge into possible high-frequency representations, which is our way of discretely modeling the underlying high-frequency distribution. At convergence stage, we assign spatial weights to fuse these divergent predictions to obtain the final output with more accurate details. Our approach provides a convenient end-to-end manner to inference. We conduct evaluations on several real-world benchmarks, including a new proposed D2CRealSR dataset with x8 scaling factor. Our experiments demonstrate that D2C-SR achieves better accuracy and visual improvements against state-of-the-art methods, with a significantly less parameters number and our D2C structure can also be applied as a generalized structure to some other methods to obtain improvement. Our codes and dataset are available at

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others


  1. Anwar, S., Khan, S., Barnes, N.: A deep journey into super-resolution: a survey. ACM Comput. Surv. (CSUR) 53(3), 1–34 (2020)

    Google Scholar 

  2. Bahat, Y., Michaeli, T.: Explorable super resolution. In: CVPR, pp. 2716–2725 (2020)

    Google Scholar 

  3. Buhler, M.C., Romero, A., Timofte, R.: DeepSEE: deep disentangled semantic explorative extreme super-resolution. In: ACCV (2020)

    Google Scholar 

  4. Cai, J., Zeng, H., Yong, H., Cao, Z., Zhang, L.: Toward real-world single image super-resolution: a new benchmark and a new model. In: CVPR, pp. 3086–3095 (2019)

    Google Scholar 

  5. Chen, C., Xiong, Z., Tian, X., Zha, Z.J., Wu, F.: Camera lens super-resolution. In: CVPR, pp. 1652–1660 (2019)

    Google Scholar 

  6. Dai, D., Timofte, R., Van Gool, L.: Jointly optimized regressors for image super-resolution. Comput. Graph. Forum 34, 95–104 (2015)

    Article  Google Scholar 

  7. Goodfellow, I.J., et al.: Y.: Generative adversarial networks. arXiv preprint arXiv:1406.2661 (2014)

  8. Gu, J., Lu, H., Zuo, W., Dong, C.: Blind super-resolution with iterative kernel correction. In: CVPR, pp. 1604–1613 (2019)

    Google Scholar 

  9. Hui, Z., Gao, X., Yang, Y., Wang, X.: Lightweight image super-resolution with information multi-distillation network. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 2024–2032 (2019)

    Google Scholar 

  10. Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: CVPR, pp. 1646–1654 (2016)

    Google Scholar 

  11. Kim, J., Lee, J.K., Lee, K.M.: Deeply-recursive convolutional network for image super-resolution. In: CVPR, pp. 1637–1645 (2016)

    Google Scholar 

  12. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR, pp. 4681–4690 (2017)

    Google Scholar 

  13. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: CVPRW, pp. 136–144 (2017)

    Google Scholar 

  14. Lugmayr, A., Danelljan, M., Van Gool, L., Timofte, R.: SRFlow: learning the super-resolution space with normalizing flow. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 715–732. Springer, Cham (2020).

    Chapter  Google Scholar 

  15. Michelini, P.N., Liu, H., Zhu, D.: Multigrid backprojection super-resolution and deep filter visualization. In: AAAI, vol. 33, pp. 4642–4650 (2019)

    Google Scholar 

  16. Pan, Z., et al.: Real image super resolution via heterogeneous model ensemble using GP-NAS. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12537, pp. 423–436. Springer, Cham (2020).

    Chapter  Google Scholar 

  17. Sajjadi, M.S., Scholkopf, B., Hirsch, M.: EnhanceNet: single image super-resolution through automated texture synthesis. In: ICCV, pp. 4491–4500 (2017)

    Google Scholar 

  18. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: CVPR, pp. 1874–1883 (2016)

    Google Scholar 

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  20. Song, D., Xu, C., Jia, X., Chen, Y., Xu, C., Wang, Y.: Efficient residual dense block search for image super-resolution. In: AAAI, vol. 34, pp. 12007–12014 (2020)

    Google Scholar 

  21. Sun, L., Hays, J.: Super-resolution from internet-scale scene matching. In: Proceedings of ICCP, pp. 1–12 (2012)

    Google Scholar 

  22. Timofte, R., De Smet, V., Van Gool, L.: Anchored neighborhood regression for fast example-based super-resolution. In: ICCV, pp. 1920–1927 (2013)

    Google Scholar 

  23. Timofte, R., De Smet, V., Van Gool, L.: A+: adjusted anchored neighborhood regression for fast super-resolution. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9006, pp. 111–126. Springer, Cham (2015).

    Chapter  Google Scholar 

  24. Wang, L., Huang, Z., Gong, Y., Pan, C.: Ensemble based deep networks for image super-resolution. Pattern Recogn. 68, 191–198 (2017)

    Article  Google Scholar 

  25. Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 63–79. Springer, Cham (2019).

    Chapter  Google Scholar 

  26. Wang, Z., Chen, J., Hoi, S.C.: Deep learning for image super-resolution: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3365–3385 (2020)

    Google Scholar 

  27. Wei, P., et al.: Component divide-and-conquer for real-world image super-resolution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 101–117. Springer, Cham (2020).

    Chapter  Google Scholar 

  28. Xiong, D., Gui, Q., Hou, W., Ding, M.: Gradient boosting for single image super-resolution. Inform. Sci. 454, 328–343 (2018)

    Article  MathSciNet  Google Scholar 

  29. Yang, C.Y., Yang, M.H.: Fast direct super-resolution by simple functions. In: ICCV, pp. 561–568 (2013)

    Google Scholar 

  30. Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution as sparse representation of raw image patches. In: CVPR, pp. 1–8 (2008)

    Google Scholar 

  31. Zhang, X., Chen, Q., Ng, R., Koltun, V.: Zoom to learn, learn to zoom. In: CVPR, pp. 3762–3770 (2019)

    Google Scholar 

  32. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 294–310. Springer, Cham (2018).

    Chapter  Google Scholar 

  33. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: CVPR, pp. 2472–2481 (2018)

    Google Scholar 

Download references


This work was supported by the National Natural Science Foundation of China (NSFC) under grants No. 61872067 and No. 61720106004.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Shuaicheng Liu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4753 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Huang, H., Jia, L., Fan, H., Liu, S. (2022). D2C-SR: A Divergence to Convergence Approach for Real-World Image Super-Resolution. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13679. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19799-4

  • Online ISBN: 978-3-031-19800-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics