Skip to main content

Ghost-free High Dynamic Range Imaging with Context-Aware Transformer

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13679))

Included in the following conference series:

Abstract

High dynamic range (HDR) deghosting algorithms aim to generate ghost-free HDR images with realistic details. Restricted by the locality of the receptive field, existing CNN-based methods are typically prone to producing ghosting artifacts and intensity distortions in the presence of large motion and severe saturation. In this paper, we propose a novel Context-Aware Vision Transformer (CA-ViT) for ghost-free high dynamic range imaging. The CA-ViT is designed as a dual-branch architecture, which can jointly capture both global and local dependencies. Specifically, the global branch employs a window-based Transformer encoder to model long-range object movements and intensity variations to solve ghosting. For the local branch, we design a local context extractor (LCE) to capture short-range image features and use the channel attention mechanism to select informative local details across the extracted features to complement the global branch. By incorporating the CA-ViT as basic components, we further build the HDR-Transformer, a hierarchical network to reconstruct high-quality ghost-free HDR images. Extensive experiments on three benchmark datasets show that our approach outperforms state-of-the-art methods qualitatively and quantitatively with considerably reduced computational budgets. Codes are available at https://github.com/megvii-research/HDR-Transformer.

Z. Liu and Y. Wang—-Joint First Author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. IJCV 92(1), 1–31 (2011)

    Article  Google Scholar 

  2. Bogoni, L.: Extending dynamic range of monochrome and color images through fusion. In: Proceedings of the ICPR, pp. 7–12 (2000)

    Google Scholar 

  3. Chen, H., et al.: Pre-trained image processing transformer. In: Proceedings of the CVPR, pp. 12299–12310 (2021)

    Google Scholar 

  4. Chung, H., Cho, N.I.: High dynamic range imaging of dynamic scenes with saturation compensation but without explicit motion compensation. In: Proceedings of the CVPR, pp. 2951–2961 (2022)

    Google Scholar 

  5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  6. Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  7. Gallo, O., Gelfandz, N., Chen, W.C., Tico, M., Pulli, K.: Artifact-free high dynamic range imaging. In: Proceedings of the ICCP, pp. 1–7 (2009)

    Google Scholar 

  8. Grosch, T.: Fast and robust high dynamic range image generation with camera and object movement. In: Proceedings of the VMV, pp. 277–284 (2006)

    Google Scholar 

  9. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge University Press (2003)

    Google Scholar 

  10. Hu, J., Gallo, O., Pulli, K., Sun, X.: Hdr deghosting: How to deal with saturation? In: Proceedings of the CVPR, pp. 1163–1170 (2013)

    Google Scholar 

  11. Jacobs, K., Loscos, C., Ward, G.: Automatic high-dynamic range image generation for dynamic scenes. IEEE Comput. Graphics Appl. 28(2), 84–93 (2008)

    Article  Google Scholar 

  12. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  13. Kalantari, N.K., Ramamoorthi, R.: Deep high dynamic range imaging of dynamic scenes. ACM Trans. Graphics 36(4), 144 (2017)

    Article  Google Scholar 

  14. Kang, S.B., Uyttendaele, M., Winder, S., Szeliski, R.: High dynamic range video. ACM Trans. Graphics 22(3), 319–325 (2003)

    Article  Google Scholar 

  15. Khan, E.A., Akyuz, A.O., Reinhard, E.: Ghost removal in high dynamic range images. In: Proceedings of the ICIP, pp. 2005–2008 (2006)

    Google Scholar 

  16. Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: Swinir: Image restoration using swin transformer. In: Proceedings of the ICCVW, pp. 1833–1844 (2021)

    Google Scholar 

  17. Liu, G., Reda, F.A., Shih, K.J., Wang, T.-C., Tao, A., Catanzaro, B.: Image inpainting for irregular holes using partial convolutions. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 89–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_6

    Chapter  Google Scholar 

  18. Liu, Z., et al.: Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the ICCV, pp. 10012–10022 (2021)

    Google Scholar 

  19. Liu, Z., et al.: Adnet: Attention-guided deformable convolutional network for high dynamic range imaging. In: Proceedings of the CVPRW, pp. 463–470 (2021)

    Google Scholar 

  20. Ma, K., Duanmu, Z., Zhu, H., Fang, Y., Wang, Z.: Deep guided learning for fast multi-exposure image fusion. IEEE Trans. on Image Processing 29, 2808–2819 (2019)

    Article  MATH  Google Scholar 

  21. Ma, K., Li, H., Yong, H., Wang, Z., Meng, D., Zhang, L.: Robust multi-exposure image fusion: a structural patch decomposition approach. IEEE Trans. on Image Processing 26(5), 2519–2532 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mantiuk, R., Kim, K.J., Rempel, A.G., Heidrich, W.: Hdr-vdp-2: A calibrated visual metric for visibility and quality predictions in all luminance conditions. ACM Trans. Graphics 30(4), 1–14 (2011)

    Article  Google Scholar 

  23. Mertens, T., Kautz, J., Van Reeth, F.: Exposure fusion. In: Proceedings of the PG, pp. 382–390 (2007)

    Google Scholar 

  24. Naseer, M., Ranasinghe, K., Khan, S., Hayat, M., Khan, F.S., Yang, M.H.: Intriguing properties of vision transformers. arXiv preprint arXiv:2105.10497 (2021)

  25. Niu, Y., Wu, J., Liu, W., Guo, W., Lau, R.W.: Hdr-gan: Hdr image reconstruction from multi-exposed ldr images with large motions. IEEE Trans. on Image Processing 30, 3885–3896 (2021)

    Article  Google Scholar 

  26. Oh, T.H., Lee, J.Y., Tai, Y.W., Kweon, I.S.: Robust high dynamic range imaging by rank minimization. IEEE Trans. Pattern Anal. Mach. Intell. 37(6), 1219–1232 (2014)

    Article  Google Scholar 

  27. Pece, F., Kautz, J.: Bitmap movement detection: Hdr for dynamic scenes. In: Proceedings of the CVMP, pp. 1–8 (2010)

    Google Scholar 

  28. Prabhakar, K.R., Agrawal, S., Singh, D.K., Ashwath, B., Babu, R.V.: Towards practical and efficient high-resolution HDR deghosting with CNN. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 497–513. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1_30

    Chapter  Google Scholar 

  29. Prabhakar, K.R., Arora, R., Swaminathan, A., Singh, K.P., Babu, R.V.: A fast, scalable, and reliable deghosting method for extreme exposure fusion. In: Proceedings of the ICCP, pp. 1–8. IEEE (2019)

    Google Scholar 

  30. Prabhakar, K.R., Senthil, G., Agrawal, S., Babu, R.V., Gorthi, R.K.S.S.: Labeled from unlabeled: Exploiting unlabeled data for few-shot deep hdr deghosting. In: Proceedings of the CVPR, pp. 4875–4885 (2021)

    Google Scholar 

  31. Ram Prabhakar, K., Sai Srikar, V., Venkatesh Babu, R.: Deepfuse: A deep unsupervised approach for exposure fusion with extreme exposure image pairs. In: Proceedings of the ICCV, pp. 4714–4722 (2017)

    Google Scholar 

  32. Raman, S., Chaudhuri, S.: Reconstruction of high contrast images for dynamic scenes. Vis. Comput. 27(12), 1099–1114 (2011)

    Article  Google Scholar 

  33. Sen, P., Kalantari, N.K., Yaesoubi, M., Darabi, S., Goldman, D.B., Shechtman, E.: Robust patch-based hdr reconstruction of dynamic scenes. ACM Trans. Graphics 31(6), 203 (2012)

    Article  Google Scholar 

  34. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  35. Tursun, O.T., Akyüz, A.O., Erdem, A., Erdem, E.: An objective deghosting quality metric for hdr images. In: Proceedings of the CGF, pp. 139–152 (2016)

    Google Scholar 

  36. Vaswani, A., et al.: Attention is all you need. In: Proceedings of the NeurIPS, pp. 5998–6008 (2017)

    Google Scholar 

  37. Wu, S., Xu, J., Tai, Y.-W., Tang, C.-K.: Deep high dynamic range imaging with large foreground motions. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 120–135. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_8

    Chapter  Google Scholar 

  38. Xiao, T., Singh, M., Mintun, E., Darrell, T., Dollár, P., Girshick, R.: Early convolutions help transformers see better. arXiv preprint arXiv:2106.14881 (2021)

  39. Yan, Q., et al.: Attention-guided network for ghost-free high dynamic range imaging. In: Proceedings of the CVPR, pp. 1751–1760 (2019)

    Google Scholar 

  40. Yan, Q., et al.: Deep hdr imaging via a non-local network. IEEE Trans. on Image Processing 29, 4308–4322 (2020)

    Article  MATH  Google Scholar 

  41. Zhang, W., Cham, W.K.: Gradient-directed multiexposure composition. IEEE Trans. on Image Processing 21(4), 2318–2323 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zimmer, H., Bruhn, A., Weickert, J.: Freehand hdr imaging of moving scenes with simultaneous resolution enhancement. In: Proceedings of the CGF, pp. 405–414 (2011)

    Google Scholar 

Download references

Acknowledgement

This work was supported by National Natural Science Foundation of China under grants No. (61872067, 62031009 and 61720106004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Liu or Shuaicheng Liu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 6139 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Z., Wang, Y., Zeng, B., Liu, S. (2022). Ghost-free High Dynamic Range Imaging with Context-Aware Transformer. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13679. Springer, Cham. https://doi.org/10.1007/978-3-031-19800-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19800-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19799-4

  • Online ISBN: 978-3-031-19800-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics