Skip to main content

Attention-Aware Learning for Hyperparameter Prediction in Image Processing Pipelines

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13679))

Included in the following conference series:

Abstract

Between the imaging sensor and the image applications, the hardware image signal processing (ISP) pipelines reconstruct an RGB image from the sensor signal and feed it into downstream tasks. The processing blocks in ISPs depend on a set of tunable hyperparameters that have a complex interaction with the output. Manual setting by image experts is the traditional way of hyperparameter tuning, which is time-consuming and biased towards human perception. Recently, ISP has been optimized by the feedback of the downstream tasks based on different optimization algorithms. Unfortunately, these methods should keep parameters fixed during the inference stage for arbitrary input without considering that each image should have specific parameters based on its feature. To this end, we propose an attention-aware learning method that integrates the parameter prediction network into ISP tuning and utilizes the multi-attention mechanism to generate the attentive mapping between the input RAW image and the parameter space. The proposed method integrates downstream tasks end-to-end, predicting specific parameters for each image. We validate the proposed method on object detection, image segmentation, and human viewing tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. IEEE standard for camera phone image quality. IEEE Std 1858–2016 (Incorporating IEEE Std 1858–2016/Cor 1–2017), pp. 1–146 (2017). https://doi.org/10.1109/IEEESTD.2017.7921676

  2. Bardenet, R., Brendel, M., Kégl, B., Sebag, M.: Collaborative hyperparameter tuning. In: International conference on machine learning, pp. 199–207 (2013)

    Google Scholar 

  3. van Beek, P., Wu, C.T.R., Chaudhury, B., Gardos, T.R.: Boosting computer vision performance by enhancing camera ISP. Electronic Imaging 2021(17), 1–174 (2021)

    Google Scholar 

  4. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization. In: Advances in Neural Information Processing Systems 24 (2011)

    Google Scholar 

  5. Bergstra, J., Yamins, D., Cox, D.: Making a science of model search: hyperparameter optimization in hundreds of dimensions for vision architectures. In: International Conference on Machine Learning, pp. 115–123 (2013)

    Google Scholar 

  6. Brown, M.S., Kim, S.: Understanding the in-camera image processing pipeline for computer vision. In: IEEE International Conference on Computer Vision, vol. 3 (2019)

    Google Scholar 

  7. Buckler, M., Jayasuriya, S., Sampson, A.: Reconfiguring the imaging pipeline for computer vision. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 975–984 (2017)

    Google Scholar 

  8. Cao, Y., Wu, X., Qi, S., Liu, X., Wu, Z., Zuo, W.: Pseudo-ISP: learning pseudo in-camera signal processing pipeline from a color image denoiser. arXiv preprint arXiv:2103.10234 (2021)

  9. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  10. Chen, C., Chen, Q., Xu, J., Koltun, V.: Learning to see in the dark. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3291–3300 (2018)

    Google Scholar 

  11. Cheung, E.C., Wong, J., Chan, J., Pan, J.: Optimization-based automatic parameter tuning for stereo vision. In: 2015 IEEE International Conference on Automation Science and Engineering (CASE), pp. 855–861 (2015)

    Google Scholar 

  12. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 11(1), 1–18 (2003)

    Article  Google Scholar 

  13. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE international conference on computer vision, pp. 2961–2969 (2017)

    Google Scholar 

  14. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1389–1397 (2017)

    Google Scholar 

  15. Ignatov, A., Van Gool, L., Timofte, R.: Replacing mobile camera ISP with a single deep learning model. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 536–537 (2020)

    Google Scholar 

  16. Jacob, B., et al.: Quantization and training of neural networks for efficient integer-arithmetic-only inference. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2704–2713 (2018)

    Google Scholar 

  17. Karaimer, H.C., Brown, M.S.: A software platform for manipulating the camera imaging pipeline. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 429–444. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_26

    Chapter  Google Scholar 

  18. Kim, S.J., Lin, H.T., Lu, Z., Süsstrunk, S., Lin, S., Brown, M.S.: A new in-camera imaging model for color computer vision and its application. IEEE Trans. Pattern Anal. Mach. Intell. 34(12), 2289–2302 (2012)

    Article  Google Scholar 

  19. Kim, Y., Lee, J., Kim, S.S., Yang, C., Kim, T., Yim, J.: DNN-based ISP parameter inference algorithm for automatic image quality optimization. Electronic Imaging 2020(9), 1–315 (2020)

    Google Scholar 

  20. Liang, Z., Cai, J., Cao, Z., Zhang, L.: CameraNet: a two-stage framework for effective camera ISP learning. IEEE Trans. Image Process. 30, 2248–2262 (2021)

    Article  Google Scholar 

  21. Lin, J., Rao, Y., Lu, J., Zhou, J.: Runtime neural pruning. In: Advances in neural information processing systems 30 (2017)

    Google Scholar 

  22. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  23. Liu, D., Wen, B., Jiao, J., Liu, X., Wang, Z., Huang, T.S.: Connecting image denoising and high-level vision tasks via deep learning. IEEE Trans. Image Process. 29, 3695–3706 (2020)

    Article  MATH  Google Scholar 

  24. Majumdar, P., Singh, R., Vatsa, M.: Attention aware debiasing for unbiased model prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4133–4141 (2021)

    Google Scholar 

  25. Mantiuk, R.K., Tomaszewska, A., Mantiuk, R.: Comparison of four subjective methods for image quality assessment. In: Computer graphics forum, vol. 31, pp. 2478–2491. Wiley Online Library (2012)

    Google Scholar 

  26. Mosleh, A., Sharma, A., Onzon, E., Mannan, F., Robidoux, N., Heide, F.: Hardware-in-the-loop end-to-end optimization of camera image processing pipelines. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7529–7538 (2020)

    Google Scholar 

  27. Nishimura, J., Gerasimow, T., Sushma, R., Sutic, A., Wu, C.T., Michael, G.: Automatic ISP image quality tuning using nonlinear optimization. In: 2018 25th IEEE International Conference on Image Processing, pp. 2471–2475. IEEE (2018)

    Google Scholar 

  28. Onzon, E., Mannan, F., Heide, F.: Neural auto-exposure for high-dynamic range object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7710–7720 (2021)

    Google Scholar 

  29. Pfister, L., Bresler, Y.: Learning filter bank sparsifying transforms. IEEE Trans. Signal Process. 67(2), 504–519 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Phan, B., Mannan, F., Heide, F.: Adversarial imaging pipelines. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16051–16061 (2021)

    Google Scholar 

  31. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  32. Robidoux, N., Capel, L.E.G., Seo, D., Sharma, A., Ariza, F., Heide, F.: End-to-end high dynamic range camera pipeline optimization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6297–6307 (2021)

    Google Scholar 

  33. Schwartz, E., Giryes, R., Bronstein, A.M.: DeepISP: toward learning an end-to-end image processing pipeline. IEEE Trans. Image Process. 28(2), 912–923 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Thung, K.H., Raveendran, P.: A survey of image quality measures. In: IEEE international conference for technical postgraduates, pp. 1–4 (2009)

    Google Scholar 

  35. Tseng, E., et al.: Differentiable compound optics and processing pipeline optimization for end-to-end camera design. ACM Trans. Graph. 40(2), 1–19 (2021)

    Article  Google Scholar 

  36. Tseng, E., et al.: Hyperparameter optimization in black-box image processing using differentiable proxies. ACM Trans. Graph. 38(4), 1–27 (2019)

    Article  Google Scholar 

  37. Vaswani, A., et al.: Attention is all you need. In: Advances in neural information processing systems 30 (2017)

    Google Scholar 

  38. Wu, C.T., et al.: VisionISP: repurposing the image signal processor for computer vision applications. In: IEEE International Conference on Image Processing, pp. 4624–4628. IEEE (2019)

    Google Scholar 

  39. Yahiaoui, L., Hughes, C., Horgan, J., Deegan, B., Denny, P., Yogamani, S.: Optimization of ISP parameters for object detection algorithms. Electronic Imaging 2019(15), 1–44 (2019)

    Google Scholar 

  40. Yang, C., et al.: Effective ISP tuning framework based on user preference feedback. Electronic Imaging 2020(9), 1–316 (2020)

    Google Scholar 

  41. Yogatama, D., Mann, G.: Efficient transfer learning method for automatic hyperparameter tuning. In: Artificial intelligence and statistics, pp. 1077–1085. PMLR (2014)

    Google Scholar 

  42. Yu, K., Li, Z., Peng, Y., Loy, C.C., Gu, J.: ReconfigISP: reconfigurable camera image processing pipeline. arXiv preprint arXiv:2109.04760 (2021)

  43. Zamir, S.W., et al.: CycleISP: real image restoration via improved data synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2696–2705 (2020)

    Google Scholar 

  44. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8697–8710 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2020AAA0105802), the Natural Science Foundation of China (Grant No. 62036011,62192782, 61721004,62122086, 61906192, U1936204 ), the Key Research Program of Frontier Sciences, CAS, Grant No. QYZDJ-SSW-JSC040, Beijing Natural Science Foundation (No. 4222003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Li .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1195 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qin, H. et al. (2022). Attention-Aware Learning for Hyperparameter Prediction in Image Processing Pipelines. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13679. Springer, Cham. https://doi.org/10.1007/978-3-031-19800-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19800-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19799-4

  • Online ISBN: 978-3-031-19800-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics