Skip to main content

ARM: Any-Time Super-Resolution Method

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13679))

Included in the following conference series:

Abstract

This paper proposes an Any-time super-Resolution Method (ARM) to tackle the over-parameterized single image super-resolution (SISR) models. Our ARM is motivated by three observations: (1) The performance of different image patches varies with SISR networks of different sizes. (2) There is a tradeoff between computation overhead and performance of the reconstructed image. (3) Given an input image, its edge information can be an effective option to estimate its PSNR. Subsequently, we train an ARM supernet containing SISR subnets of different sizes to deal with image patches of various complexity. To that effect, we construct an Edge-to-PSNR lookup table that maps the edge score of an image patch to the PSNR performance for each subnet, together with a set of computation costs for the subnets. In the inference, the image patches are individually distributed to different subnets for a better computation-performance tradeoff. Moreover, each SISR subnet shares weights of the ARM supernet, thus no extra parameters are introduced. The setting of multiple subnets can well adapt the computational cost of SISR model to the dynamically available hardware resources, allowing the SISR task to be in service at any time. Extensive experiments on resolution datasets of different sizes with popular SISR networks as backbones verify the effectiveness and the versatility of our ARM. The source code is available at https://github.com/chenbong/ARM-Net.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    To stress the superiority of our method, we only consider \(\ell _1\)-norm loss in this paper. Other training losses [8, 12] for SISR can be combined to further enhance the results.

  2. 2.

    In our supernet training, \(X'\) and \(Y'\) are indeed batches of local image patches from the X and Y. Details are given in Sect. 4.1. For brevity, herein we simply regard them as image batches.

References

  1. Agustsson, E., Timofte, R.: Ntire 2017 challenge on single image super-resolution: Dataset and study. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1122–1131 (2017)

    Google Scholar 

  2. Ahn, N., Kang, B., Sohn, K.-A.: Fast, accurate, and lightweight super-resolution with cascading residual network. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 256–272. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_16

    Chapter  Google Scholar 

  3. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI). 6, 679–698 (1986)

    Article  Google Scholar 

  4. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI). 38, 295–307 (2015)

    Article  Google Scholar 

  5. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI). 38, 295–307 (2016)

    Article  Google Scholar 

  6. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 391–407. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_25

    Chapter  Google Scholar 

  7. Fekri, F., Mersereau, R.M., Schafer, R.W.: A generalized interpolative VQ method for jointly optimal quantization and interpolation of images. In: Proceedings of the IEEE International Conference on Acoustics, Speech and SP (ICASSP), vol. 5, pp. 2657–2660 (1998)

    Google Scholar 

  8. Fuoli, D., Van Gool, L., Timofte, R.: Fourier space losses for efficient perceptual image super-resolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2360–2369 (2021)

    Google Scholar 

  9. Gao, Q., Zhao, Y., Li, G., Tong, T.: Image super-resolution using knowledge distillation. In: Proceedings of the Asian Conference on Computer Vision (ACCV), pp. 527–541 (2018)

    Google Scholar 

  10. Gu, S., Lugmayr, A., Danelljan, M., Fritsche, M., Lamour, J., Timofte, R.: Div8k: diverse 8k resolution image dataset. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), pp. 3512–3516 (2019)

    Google Scholar 

  11. He, Z., Dai, T., Lu, J., Jiang, Y., Xia, S.T.: FAKD: Feature-affinity based knowledge distillation for efficient image super-resolution. In: Proceedings of the International Conference on Image Processing (ICIP), pp. 518–522 (2020)

    Google Scholar 

  12. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  13. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1646–1654 (2016)

    Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  15. Kong, X., Zhao, H., Qiao, Y., Dong, C.: Classsr: A general framework to accelerate super-resolution networks by data characteristic. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 12016–12025 (2021)

    Google Scholar 

  16. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4681–4690 (2017)

    Google Scholar 

  17. Lee, R., et al.: Journey towards tiny perceptual super-resolution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12371, pp. 85–102. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58574-7_6

    Chapter  Google Scholar 

  18. Lee, W., Lee, J., Kim, D., Ham, B.: Learning with privileged information for efficient image super-resolution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12369, pp. 465–482. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58586-0_28

    Chapter  Google Scholar 

  19. Li, H., et al.: PAMS: quantized super-resolution via parameterized max scale. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 564–580. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_34

    Chapter  Google Scholar 

  20. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 136–144 (2017)

    Google Scholar 

  21. Lou, W., Xun, L., Sabet, A., Bi, J., Hare, J., Merrett, G.V.: Dynamic-OFA: Runtime DNN architecture switching for performance scaling on heterogeneous embedded platforms. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3110–3118 (2021)

    Google Scholar 

  22. Ma, Y., Xiong, H., Hu, Z., Ma, L.: Efficient super resolution using binarized neural network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2019)

    Google Scholar 

  23. Marr, D., Hildreth, E.: Theory of edge detection. Proc. R. Soc. London Ser. B. 207, 187–217 (1980)

    Article  Google Scholar 

  24. Song, D., Wang, Y., Chen, H., Xu, C., Xu, C., Tao, D.: AdderSR: towards energy efficient image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15648–15657 (2021)

    Google Scholar 

  25. Thurnhofer, S., Mitra, S.K.: Edge-enhanced image zooming. Opt. Eng. 35, 1862–1870 (1996)

    Article  Google Scholar 

  26. Tong, T., Li, G., Liu, X., Gao, Q.: Image super-resolution using dense skip connections. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4799–4807 (2017)

    Google Scholar 

  27. Wang, L., et al.: Exploring sparsity in image super-resolution for efficient inference. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4917–4926 (2021)

    Google Scholar 

  28. Wang, X., Yu, K., Dong, C., Loy, C.C.: Recovering realistic texture in image super-resolution by deep spatial feature transform. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 606–615 (2018)

    Google Scholar 

  29. Wang, Y., et al.: Towards compact single image super-resolution via contrastive self-distillation. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) (2021)

    Google Scholar 

  30. Xie, W., Song, D., Xu, C., Xu, C., Zhang, H., Wang, Y.: Learning frequency-aware dynamic network for efficient super-resolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4308–4317 (2021)

    Google Scholar 

  31. Xin, J., Wang, N., Jiang, X., Li, J., Huang, H., Gao, X.: Binarized neural network for single image super resolution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 91–107. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_6

    Chapter  Google Scholar 

  32. Yang, T., et al.: MutualNet: Adaptive convnet via mutual learning from different model configurations. IEEE Trans. Pattern Anal. Machine Intell. (TPAMI) (2021)

    Google Scholar 

  33. Yu, J., et al.: Wide activation for efficient and accurate image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  34. Yu, J., Huang, T.S.: Universally slimmable networks and improved training techniques. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1803–1811 (2019)

    Google Scholar 

  35. Yu, J., Yang, L., Xu, N., Yang, J., Huang, T.: Slimmable neural networks. In: Proceedings of the International Conference on Learning Representations (ICLR) (2019)

    Google Scholar 

  36. Yu, K., Wang, X., Dong, C., Tang, X., Loy, C.C.: Path-restore: learning network path selection for image restoration. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) (2021)

    Google Scholar 

  37. Zhan, Z., et al.: Achieving on-mobile real-time super-resolution with neural architecture and pruning search. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4821–4831 (2021)

    Google Scholar 

  38. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 294–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_18

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Fund for Distinguished Young Scholars (No. 62025603), the National Natural Science Foundation of China (No. U21B2037, No. 62176222, No. 62176223, No. 62176226, No. 62072386, No. 62072387, No. 62072389, and No. 62002305), Guangdong Basic and Applied Basic Research Foundation (No. 2019B1515120049), and the Natural Science Foundation of Fujian Province of China (No. 2021J01002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liujuan Cao .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 788 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, B. et al. (2022). ARM: Any-Time Super-Resolution Method. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13679. Springer, Cham. https://doi.org/10.1007/978-3-031-19800-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19800-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19799-4

  • Online ISBN: 978-3-031-19800-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics