Skip to main content

Deep Fourier-Based Exposure Correction Network with Spatial-Frequency Interaction

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13679))

Included in the following conference series:

  • 4517 Accesses

Abstract

Images captured under incorrect exposures unavoidably suffer from mixed degradations of lightness and structures. Most existing deep learning-based exposure correction methods separately restore such degradations in the spatial domain. In this paper, we present a new perspective for exposure correction with spatial-frequency interaction. Specifically, we first revisit the frequency properties of different exposure images via Fourier transform where the amplitude component contains most lightness information and the phase component is relevant to structure information. To this end, we propose a deep Fourier-based Exposure Correction Network (FECNet) consisting of an amplitude sub-network and a phase sub-network to progressively reconstruct the representation of lightness and structure components. To facilitate learning these two representations, we introduce a Spatial-Frequency Interaction (SFI) block in two formats tailored to these two sub-networks, which interactively process the local spatial features and the global frequency information to encourage the complementary learning. Extensive experiments demonstrate that our method achieves superior results than other approaches with fewer parameters and can be extended to other image enhancement tasks, validating its potential in wide-range applications. Code will be available at https://github.com/KevinJ-Huang/FECNet.

J. Huang and Y. Liu—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdullah-Al-Wadud, M., Kabir, M.H., Akber Dewan, M.A., Chae, O.: A dynamic histogram equalization for image contrast enhancement. IEEE Trans. Consum. Electron. 53(2), 593–600 (2007)

    Article  Google Scholar 

  2. Afifi, M., Derpanis, K.G., Ommer, B., Brown, M.S.: Learning multi-scale photo exposure correction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  3. Wang et al., W.: GladNet: low-light enhancement network with global awareness. In: Proceedings of the IEEE Conference on Automatic Face and Gesture Recognition (FG) (2018)

    Google Scholar 

  4. Jiang, Y., et al.: EnlightenGAN: deep light enhancement without paired supervision. IEEE Trans. Image Process. (TIP) 30, 2340–2349 (2021)

    Article  Google Scholar 

  5. Bychkovsky, V., Paris, S., Chan, E., Durand, F.: Learning photographic global tonal adjustment with a database of input output image pairs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2011)

    Google Scholar 

  6. Cai, B., Xu, X., Guo, K., Jia, K., Hu, B., Tao, D.: A joint intrinsic-extrinsic prior model for retinex. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4000–4009 (2017)

    Google Scholar 

  7. Cai, J., Gu, S., Zhang, L.: Learning a deep single image contrast enhancer from multi-exposure images. IEEE Trans. Image Process. (TIP) 27(4), 2049–2062 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, C., Chen, Q., Xu, J., Koltun, V.: Learning to see in the dark. arXiv preprint arXiv:1805.01934 (2018)

  9. Chen, Y.S., Wang, Y.C., Kao, M.H., Chuang, Y.Y.: Deep photo enhancer: unpaired learning for image enhancement from photographs with GANs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6306–6314 (2018)

    Google Scholar 

  10. Chi, L., Jiang, B., Mu, Y.: Fast Fourier convolution. In: Advances in Neural Information Processing Systems (NIPS), vol. 33, pp. 4479–4488 (2020)

    Google Scholar 

  11. Chi, L., Tian, G., Mu, Y., Xie, L., Tian, Q.: Fast non-local neural networks with spectral residual learning. In: Proceedings of the 27th ACM International Conference on Multimedia (MM), pp. 2142–2151 (2019)

    Google Scholar 

  12. Feifan Lv, Feng Lu, J.W.C.L.: Mbllen: low-light image/video enhancement using CNNs. In: Proceedings of the The British Machine Vision Conference (BMVC) (2018)

    Google Scholar 

  13. Fuoli, D., Van Gool, L., Timofte, R.: Fourier space losses for efficient perceptual image super-resolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2360–2369 (2021)

    Google Scholar 

  14. Gharbi, M., Chen, J., Barron, J.T., Hasinoff, S.W., Durand, F.: Deep bilateral learning for real-time image enhancement. ACM Trans. Graphics (TOG) 36(4), 118 (2017)

    Article  Google Scholar 

  15. Guo, C.G., et al.: Zero-reference deep curve estimation for low-light image enhancement. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1780–1789 (2020)

    Google Scholar 

  16. Guo, X., Li, Y., Ling, H.: Lime: low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. (TIP) 26(2), 982–993 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. He, J., Liu, Y., Qiao, Yu., Dong, C.: Conditional sequential modulation for efficient global image retouching. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 679–695. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_40

    Chapter  Google Scholar 

  18. Hu, Y., He, H., Xu, C., Wang, B., Lin, S.: Exposure: a white-box photo post-processing framework. ACM Trans. Graphics (TOG) 37(2), 1–17 (2018)

    Article  Google Scholar 

  19. Ignatov, A., Kobyshev, N., Timofte, R., Vanhoey, K., Van Gool, L.: DSLR-quality photos on mobile devices with deep convolutional networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3277–3285 (2017)

    Google Scholar 

  20. Jiang, L., Dai, B., Wu, W., Loy, C.C.: Focal frequency loss for image reconstruction and synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13919–13929 (2021)

    Google Scholar 

  21. Katznelson, Y.: An Introduction to Harmonic Analysis. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  22. Land, E.H.: The retinex theory of color vision. Sci. Am. 237(6), 108–129 (1977)

    Article  Google Scholar 

  23. Li, J., Li, J., Fang, F., Li, F., Zhang, G.: Luminance-aware pyramid network for low-light image enhancement. IEEE Trans. Multimedia (TMM) 23, 3153–3165 (2020)

    Article  Google Scholar 

  24. Li, M., Liu, J., Yang, W., Sun, X., Guo, Z.: Structure-revealing low-light image enhancement via robust retinex model. IEEE Trans. Image Process. (TIP) 27(6), 2828–2841 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lim, S., Kim, W.: DSLR: deep stacked Laplacian restorer for low-light image enhancement. IEEE Trans. Multimedia (TMM) 23, 4272–4284 (2020)

    Article  Google Scholar 

  26. Liu, J., Xu, D., Yang, W., Fan, M., Huang, H.: Benchmarking low-light image enhancement and beyond. Int. J. Comput. Vision 129(4), 1153–1184 (2021). https://doi.org/10.1007/s11263-020-01418-8

    Article  Google Scholar 

  27. Lv, F., Li, Y., Lu, F.: Attention guided low-light image enhancement with a large scale low-light simulation dataset. Int. J. Comput. Vis. (IJCV) 129, 2175–2193 (2021). https://doi.org/10.1007/s11263-021-01466-8

    Article  Google Scholar 

  28. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. (JMLR) 9(11), 2579–2605 (2008)

    MATH  Google Scholar 

  29. Moran, S., Marza, P., McDonagh, S., Parisot, S., Slabaugh, G.: DeepLPF: deep local parametric filters for image enhancement. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  30. Nsamp, N.E., Hu, Z., Wang, Q.: Learning exposure correction via consistency modeling. In: Proceedings of the British Machine Vision Conference (BMVC), pp. 1–12 (2018)

    Google Scholar 

  31. Prince, E.: The fast Fourier transform. In: Mathematical Techniques in Crystallography and Materials Science, pp. 140–156. Springer, Heidelberg (1994). https://doi.org/10.1007/978-3-642-97576-9_10

    Chapter  MATH  Google Scholar 

  32. Park, J., Lee, J.Y., Yoo, D., Kweon, I.S.: Distort-and-recover: color enhancement using deep reinforcement learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5928–5936 (2018)

    Google Scholar 

  33. Pizer, S.M., et al.: Adaptive histogram equalization and its variations. Comput. Vis. Graphics Image Process. 39(3), 355–368 (1987)

    Article  Google Scholar 

  34. Rao, Y., Zhao, W., Zhu, Z., Lu, J., Zhou, J.: Global filter networks for image classification. In: Advances in Neural Information Processing Systems (NIPS), vol. 34 (2021)

    Google Scholar 

  35. Ren, X., Yang, W., Cheng, W.H., Liu, J.: Lr3m: robust low-light enhancement via low-rank regularized Retinex model. IEEE Trans. Image Process. (TIP) 29, 5862–5876 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. Reza, A.M.: Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J. VLSI Signal Process. Syst. Signal, Image Video Technol. 38(1), 35–44 (2004). https://doi.org/10.1023/B:VLSI.0000028532.53893.82

    Article  Google Scholar 

  37. Rippel, O., Snoek, J., Adams, R.P.: Spectral representations for convolutional neural networks. In: Advances in Neural Information Processing Systems (NIPS), vol. 28 (2015)

    Google Scholar 

  38. Risheng, L., Long, M., Jiaao, Z., Xin, F., Zhongxuan, L.: Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement. In: Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  39. Wang, R., Zhang, Q., Fu, C.W., Shen, X., Zheng, W.S., Jia, J.: Underexposed photo enhancement using deep illumination estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6849–6857 (2019)

    Google Scholar 

  40. Wang, W., Yang, W., Liu, J.: Hla-face: joint high-low adaptation for low light face detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  41. Wei, C., Wang, W., Yang, W., Liu, J.: Deep Retinex decomposition for low-light enhancement. In: Proceedings of the British Machine Vision Conference (BMVC), pp. 155–165 (2018)

    Google Scholar 

  42. Xu, Q., Zhang, R., Zhang, Y., Wang, Y., Tian, Q.: A Fourier-based framework for domain generalization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14383–14392 (2021)

    Google Scholar 

  43. Yang, W., Wang, S., Fang, Y., Wang, Y., Liu, J.: From fidelity to perceptual quality: a semi-supervised approach for low-light image enhancement. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3063–3072 (2020)

    Google Scholar 

  44. Yang, W., Wang, W., Huang, H., Wang, S., Liu, J.: Sparse gradient regularized deep retinex network for robust low-light image enhancement. IEEE Trans. Image Process. (TIP) 30, 2072–2086 (2021)

    Article  Google Scholar 

  45. Yang, W., et al.: Advancing image understanding in poor visibility environments: a collective benchmark study. IEEE Trans. Image Process. (TIP) 29, 5737–5752 (2020)

    Article  MATH  Google Scholar 

  46. Yang, Y., Soatto, S.: FDA: Fourier domain adaptation for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4085–4095 (2020)

    Google Scholar 

  47. Ying, Z., Li, G., Ren, Y., Wang, R., Wang, W.: A new image contrast enhancement algorithm using exposure fusion framework. In: Felsberg, M., Heyden, A., Krüger, N. (eds.) CAIP 2017. LNCS, vol. 10425, pp. 36–46. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64698-5_4

    Chapter  Google Scholar 

  48. Zhang, Q., Yuan, G., Xiao, C., Zhu, L., Zheng, W.S.: High-quality exposure correction of underexposed photos. In: ACM International Conference on Multimedia (ACM MM), pp. 582–590 (2018)

    Google Scholar 

  49. Zhang, Y., Guo, X., Ma, J., Liu, W., Zhang, J.: Beyond brightening low-light images. Int. J. Comput. Vis. (IJCV) 129, 1013–1037 (2021)

    Article  Google Scholar 

  50. Zhang, Y., Zhang, J., Guo, X.: Kindling the darkness: a practical low-light image enhancer. In: ACM International Conference on Multimedia (ACM MM), pp. 1632–1640 (2019)

    Google Scholar 

  51. Zhao, L., Lu, S.P., Chen, T., Yang, Z., Shamir, A.: Deep symmetric network for underexposed image enhancement with recurrent attentional learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 12075–12084 (2021)

    Google Scholar 

Download references

Acknowledgments.

This work was supported by the Anhui Provincial Natural Science Foundation under Grant 2108085UD12. We acknowledge the support of GPU cluster built by MCC Lab of Information Science and Technology Institution, USTC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Zhao or Man Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, J. et al. (2022). Deep Fourier-Based Exposure Correction Network with Spatial-Frequency Interaction. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13679. Springer, Cham. https://doi.org/10.1007/978-3-031-19800-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19800-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19799-4

  • Online ISBN: 978-3-031-19800-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics