Skip to main content

Uncertainty Learning in Kernel Estimation for Multi-stage Blind Image Super-Resolution

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13678))

Included in the following conference series:

Abstract

Conventional wisdom in blind super-resolution (SR) first estimates the unknown degradation from the low-resolution image and then exploits the degradation information for image reconstruction. Such sequential approaches suffer from two fundamental weaknesses - i.e., the lack of robustness (the performance drops when the estimated degradation is inaccurate) and the lack of transparency (network architectures are heuristic without incorporating domain knowledge). To address these issues, we propose a joint Maximum a Posteriori (MAP) approach for estimating the unknown kernel and high-resolution image simultaneously. Our method first introduces uncertainty learning in the latent space when estimating the blur kernel, aiming at improving the robustness to the estimation error. Then we propose a novel SR network by unfolding the joint MAP estimator with a learned Laplacian Scale Mixture (LSM) prior and the estimated kernel. We have also developed a novel approach of estimating both the scale prior coefficient and the local means of the LSM model through a deep convolutional neural network (DCNN). All parameters of the MAP estimation algorithm and the DCNN parameters are jointly optimized through end-to-end training. Extensive experiments on both synthetic and real-world images show that our method achieves state-of-the-art performance for the task of blind image SR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agustsson, E., Timofte, R.: Ntire 2017 challenge on single image super-resolution: dataset and study. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 126–135 (2017)

    Google Scholar 

  2. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  3. Begin, I., Ferrie, F.: Blind super-resolution using a learning-based approach. In: Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, vol. 2, pp. 85–89. IEEE (2004)

    Google Scholar 

  4. Bell-Kligler, S., Shocher, A., Irani, M.: Blind super-resolution kernel estimation using an internal-GAN. In: NeurIPS, pp. 284–293 (2019)

    Google Scholar 

  5. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding (2012)

    Google Scholar 

  6. Chang, J., Lan, Z., Cheng, C., Wei, Y.: Data uncertainty learning in face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5710–5719 (2020)

    Google Scholar 

  7. Cornillere, V., Djelouah, A., Yifan, W., Sorkine-Hornung, O., Schroers, C.: Blind image super-resolution with spatially variant degradations. ACM Trans. Graph. (TOG) 38(6), 1–13 (2019)

    Article  Google Scholar 

  8. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. J. Issued Courant Inst. Math. Sci. 57(11), 1413–1457 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Der Kiureghian, A., Ditlevsen, O.: Aleatory or epistemic? does it matter? Struct. Saf. 31(2), 105–112 (2009)

    Article  Google Scholar 

  10. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  11. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 391–407. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_25

    Chapter  Google Scholar 

  12. Dong, W., Huang, T., Shi, G., Ma, Y., Li, X.: Robust tensor approximation with laplacian scale mixture modeling for multiframe image and video denoising. IEEE J. Sel. Top. Sig. Process. 12(6), 1435–1448 (2018)

    Article  Google Scholar 

  13. Dong, W., Wang, P., Yin, W., Shi, G., Wu, F., Lu, X.: Denoising prior driven deep neural network for image restoration. IEEE Trans. Pattern Anal. Mach. intell. 41(10), 2305–2318 (2018)

    Article  Google Scholar 

  14. Garrigues, P., Olshausen, B.: Group sparse coding with a laplacian scale mixture prior. In: Advances in Neural Information Processing Systems, vol. 23 (2010)

    Google Scholar 

  15. Gu, J., Lu, H., Zuo, W., Dong, C.: Blind super-resolution with iterative kernel correction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1604–1613 (2019)

    Google Scholar 

  16. Gu, Y., Jin, Z., Chiu, S.C.: Active learning combining uncertainty and diversity for multi-class image classification. IET Comput. Vis. 9(3), 400–407 (2015)

    Article  Google Scholar 

  17. Haris, M., Shakhnarovich, G., Ukita, N.: Deep back-projection networks for super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1664–1673 (2018)

    Google Scholar 

  18. He, H., Siu, W.C.: Single image super-resolution using gaussian process regression. In: CVPR 2011, pp. 449–456. IEEE (2011)

    Google Scholar 

  19. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  20. He, Y., Yap, K.H., Chen, L., Chau, L.P.: A soft map framework for blind super-resolution image reconstruction. Image Vis. Comput. 27(4), 364–373 (2009)

    Article  Google Scholar 

  21. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5197–5206 (2015)

    Google Scholar 

  22. Huang, T., Dong, W., Xie, X., Shi, G., Bai, X.: Mixed noise removal via laplacian scale mixture modeling and nonlocal low-rank approximation. IEEE Trans. Image Process. 26(7), 3171–3186 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Huang, T., Dong, W., Yuan, X., Wu, J., Shi, G.: Deep gaussian scale mixture prior for spectral compressive imaging. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16216–16225 (2021)

    Google Scholar 

  24. Jo, Y., Oh, S.W., Vajda, P., Kim, S.J.: Tackling the ill-posedness of super-resolution through adaptive target generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16236–16245 (2021)

    Google Scholar 

  25. Kendall, A., Gal, Y.: What uncertainties do we need in bayesian deep learning for computer vision? In: NeurIPS (2017)

    Google Scholar 

  26. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)

    Google Scholar 

  27. Kim, S.Y., Sim, H., Kim, M.: Koalanet: blind super-resolution using kernel-oriented adaptive local adjustment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10611–10620 (2021)

    Google Scholar 

  28. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  29. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: ICLR (2014)

    Google Scholar 

  30. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)

    Google Scholar 

  31. Lee, C., Chung, K.S.: Gram: gradient rescaling attention model for data uncertainty estimation in single image super resolution. In: 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), pp. 8–13. IEEE (2019)

    Google Scholar 

  32. Liang, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: Mutual affine network for spatially variant kernel estimation in blind image super-resolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4096–4105 (2021)

    Google Scholar 

  33. Liang, J., Zhang, K., Gu, S., Van Gool, L., Timofte, R.: Flow-based kernel prior with application to blind super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10601–10610 (2021)

    Google Scholar 

  34. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 136–144 (2017)

    Google Scholar 

  35. Luo, Z., Huang, Y., Li, S., Wang, L., Tan, T.: Unfolding the alternating optimization for blind super resolution. arXiv preprint arXiv:2010.02631 (2020)

  36. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, vol. 2, pp. 416–423. IEEE (2001)

    Google Scholar 

  37. Michaeli, T., Irani, M.: Nonparametric blind super-resolution. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 945–952 (2013)

    Google Scholar 

  38. Ning, Q., Dong, W., Shi, G., Li, L., Li, X.: Accurate and lightweight image super-resolution with model-guided deep unfolding network. IEEE J. Sel. Top. Sig. Process. 15(2), 240–252 (2020)

    Article  Google Scholar 

  39. Ning, Q., Dong, W., Shi, G., Li, L., Li, X.: Uncertainty-driven loss for single image super-resolution. In: NeurIPS (2021)

    Google Scholar 

  40. Ning, Q., Dong, W., Wu, F., Wu, J., Lin, J., Shi, G.: Spatial-temporal gaussian scale mixture modeling for foreground estimation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 11791–11798 (2020)

    Google Scholar 

  41. Shi, G., Huang, T., Dong, W., Wu, J., Xie, X.: Robust foreground estimation via structured gaussian scale mixture modeling. IEEE Trans. Image Process. 27(10), 4810–4824 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  42. Shocher, A., Cohen, N., Irani, M.: “Zero-shot” super-resolution using deep internal learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3118–3126 (2018)

    Google Scholar 

  43. Soh, J.W., Cho, S., Cho, N.I.: Meta-transfer learning for zero-shot super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3516–3525 (2020)

    Google Scholar 

  44. Tao, G., et al.: Spectrum-to-kernel translation for accurate blind image super-resolution. Adv. Neural Inf. Process. Syst. 34, 22643–22654 (2021)

    Google Scholar 

  45. Timofte, R., Agustsson, E., Van Gool, L., Yang, M.H., Zhang, L.: Ntire 2017 challenge on single image super-resolution: methods and results. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 114–125 (2017)

    Google Scholar 

  46. Wang, L., et al.: Unsupervised degradation representation learning for blind super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10581–10590 (2021)

    Google Scholar 

  47. Wang, Q., Tang, X., Shum, H.: Patch based blind image super resolution. In: Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1, vol. 1, pp. 709–716. IEEE (2005)

    Google Scholar 

  48. Wang, X., Yu, K., Dong, C., Loy, C.C.: Recovering realistic texture in image super-resolution by deep spatial feature transform. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 606–615 (2018)

    Google Scholar 

  49. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47

    Chapter  Google Scholar 

  50. Zhang, K., Gool, L.V., Timofte, R.: Deep unfolding network for image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3217–3226 (2020)

    Google Scholar 

  51. Zhang, K., Zuo, W., Zhang, L.: Learning a single convolutional super-resolution network for multiple degradations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3262–3271 (2018)

    Google Scholar 

  52. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 286–301 (2018)

    Google Scholar 

  53. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2472–2481 (2018)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Key R &D Program of China under Grant 2018AAA0101400 and the Natural Science Foundation of China under Grant 61991451, Grant 61632019, Grant 61621005, and Grant 61836008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weisheng Dong .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1162 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fang, Z., Dong, W., Li, X., Wu, J., Li, L., Shi, G. (2022). Uncertainty Learning in Kernel Estimation for Multi-stage Blind Image Super-Resolution. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13678. Springer, Cham. https://doi.org/10.1007/978-3-031-19797-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19797-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19796-3

  • Online ISBN: 978-3-031-19797-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics