Skip to main content

Perception-Distortion Balanced ADMM Optimization for Single-Image Super-Resolution

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

In image super-resolution, both pixel-wise accuracy and perceptual fidelity are desirable. However, most deep learning methods only achieve high performance in one aspect due to the perception-distortion trade-off, and works that successfully balance the trade-off rely on fusing results from separately trained models with ad-hoc post-processing. In this paper, we propose a novel super-resolution model with a low-frequency constraint (LFc-SR), which balances the objective and perceptual quality through a single model and yields super-resolved images with high PSNR and perceptual scores. We further introduce an ADMM-based alternating optimization method for the non-trivial learning of the constrained model. Experiments showed that our method, without cumbersome post-processing procedures, achieved the state-of-the-art performance. The code is available at https://github.com/Yuehan717/PDASR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Throughout the paper, we will use O and P (either subscript or superscript) to denote objective- and perception-focused items respectively.

References

  1. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding (2012)

    Google Scholar 

  2. Blau, Y., Michaeli, T.: The perception-distortion tradeoff. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6228–6237 (2018)

    Google Scholar 

  3. Boyd, S., Parikh, N., Chu, E.: Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Now Publishers Inc, Norwell (2011)

    Google Scholar 

  4. Chen, T.: A Fast Reduced-Space Algorithmic Framework for Sparse Optimization. Ph.D. thesis, Johns Hopkins University (2018)

    Google Scholar 

  5. Dai, T., Cai, J., Zhang, Y., Xia, S.T., Zhang, L.: Second-order attention network for single image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11065–11074 (2019)

    Google Scholar 

  6. Deng, X.: Enhancing image quality via style transfer for single image super-resolution. IEEE Sig. Process. Lett. 25(4), 571–575 (2018)

    Article  Google Scholar 

  7. Deng, X., Yang, R., Xu, M., Dragotti, P.L.: Wavelet domain style transfer for an effective perception-distortion tradeoff in single image super-resolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3076–3085 (2019)

    Google Scholar 

  8. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2015)

    Article  Google Scholar 

  9. Freirich, D., Michaeli, T., Meir, R.: A theory of the distortion-perception tradeoff in Wasserstein space. Adv. Neural Inf. Process. Syst. 34, 25661–25672 (2021)

    Google Scholar 

  10. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2414–2423 (2016)

    Google Scholar 

  11. Guo, T., Seyed Mousavi, H., Huu Vu, T., Monga, V.: Deep wavelet prediction for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 104–113 (2017)

    Google Scholar 

  12. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5197–5206 (2015)

    Google Scholar 

  13. Kiaee, F., Gagné, C., Abbasi, M.: Alternating direction method of multipliers for sparse convolutional neural networks. arXiv preprint arXiv:1611.01590 (2016)

  14. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)

    Google Scholar 

  15. Kim, J., Lee, J.K., Lee, K.M.: Deeply-recursive convolutional network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1637–1645 (2016)

    Google Scholar 

  16. Kim, J., Lee, S.: Deep learning of human visual sensitivity in image quality assessment framework. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1676–1684 (2017)

    Google Scholar 

  17. Kim, K.I., Kwon, Y.: Single-image super-resolution using sparse regression and natural image prior. IEEE Trans. Pattern Anal. Mach. Intell. 32(6), 1127–1133 (2010)

    Article  Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  19. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)

    Google Scholar 

  20. Lee, H., Kim, T., Son, H., Baek, S., Cheon, M., Lee, S.: Smoother network tuning and interpolation for continuous-level image processing. arXiv preprint arXiv:2010.02270 (2020)

  21. Leng, C., Dou, Z., Li, H., Zhu, S., Jin, R.: Extremely low bit neural network: squeeze the last bit out with ADMM. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  22. Li, C., Chen, C., Zhang, B., Ye, Q., Han, J., Ji, R.: Deep spatio-temporal manifold network for action recognition. arXiv preprint arXiv:1705.03148 (2017)

  23. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 136–144 (2017)

    Google Scholar 

  24. Liu, P., Zhang, H., Zhang, K., Lin, L., Zuo, W.: Multi-level wavelet-CNN for image restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 773–782 (2018)

    Google Scholar 

  25. Ma, C., Yang, C.Y., Yang, X., Yang, M.H.: Learning a no-reference quality metric for single-image super-resolution. Comput. Vis. Image Underst. 158, 1–16 (2017)

    Article  Google Scholar 

  26. Ma, C., Rao, Y., Cheng, Y., Chen, C., Lu, J., Zhou, J.: Structure-preserving super resolution with gradient guidance. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7769–7778 (2020)

    Google Scholar 

  27. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of 8th International Conference Computer Vision, vol. 2, pp. 416–423, July 2001

    Google Scholar 

  28. Matsui, Y., et al.: Sketch-based manga retrieval using manga109 dataset. Multimedia Tools Appl. 76(20), 21811–21838 (2016). https://doi.org/10.1007/s11042-016-4020-z

    Article  Google Scholar 

  29. Mechrez, R., Talmi, I., Shama, F., Zelnik-Manor, L.: Maintaining natural image statistics with the contextual loss. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 427–443. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_27

    Chapter  Google Scholar 

  30. Mechrez, R., Talmi, I., Zelnik-Manor, L.: The contextual loss for image transformation with non-aligned data. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 768–783 (2018)

    Google Scholar 

  31. Mei, Y., Fan, Y., Zhou, Y.: Image super-resolution with non-local sparse attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3517–3526 (2021)

    Google Scholar 

  32. Navarrete Michelini, P., Zhu, D., Liu, H.: Multi-scale recursive and perception-distortion controllable image super-resolution. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018)

    Google Scholar 

  33. Niu, B., et al.: Single image super-resolution via a holistic attention network. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 191–207. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_12

    Chapter  Google Scholar 

  34. Park, S.J., Son, H., Cho, S., Hong, K.S., Lee, S.: SRFeat: single image super-resolution with feature discrimination. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 439–455 (2018)

    Google Scholar 

  35. Ramamonjisoa, M., Firman, M., Watson, J., Lepetit, V., Turmukhambetov, D.: Single image depth prediction with wavelet decomposition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11089–11098 (2021)

    Google Scholar 

  36. Shoshan, A., Mechrez, R., Zelnik-Manor, L.: Dynamic-net: Tuning the objective without re-training for synthesis tasks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3215–3223 (2019)

    Google Scholar 

  37. Singh, V., Mittal, A.: WDN: a wide and deep network to divide-and-conquer image super-resolution. IEEE J. Sel. Top. Sign. Process. 15(2), 264–278 (2020)

    Article  Google Scholar 

  38. Takapoui, R., Moehle, N., Boyd, S., Bemporad, A.: A simple effective heuristic for embedded mixed-integer quadratic programming. Int. J. Control 93(1), 2–12 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Timofte, R., Agustsson, E., Van Gool, L., Yang, M.H., Zhang, L.: NTIRE 2017 challenge on single image super-resolution: Methods and results. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 114–125 (2017)

    Google Scholar 

  40. Tong, T., Li, G., Liu, X., Gao, Q.: Image super-resolution using dense skip connections. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4799–4807 (2017)

    Google Scholar 

  41. Vasu, S., Thekke Madam, N., Rajagopalan, A.: Analyzing perception-distortion tradeoff using enhanced perceptual super-resolution network. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018)

    Google Scholar 

  42. Vu, T., Luu, T.M., Yoo, C.D.: Perception-enhanced image super-resolution via relativistic generative adversarial networks. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018)

    Google Scholar 

  43. Wang, W., Guo, R., Tian, Y., Yang, W.: CFSNet: toward a controllable feature space for image restoration. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4140–4149 (2019)

    Google Scholar 

  44. Wang, X., et al.: ESRGAN: Enhanced super-resolution generative adversarial networks. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018)

    Google Scholar 

  45. Yang, X., Xiang, W., Zeng, H., Zhang, L.: Real-world video super-resolution: a benchmark dataset and a decomposition based learning scheme. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4781–4790 (2021)

    Google Scholar 

  46. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47

    Chapter  Google Scholar 

  47. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  48. Zhang, T., et al.: A systematic DNN weight pruning framework using alternating direction method of multipliers. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 184–199 (2018)

    Google Scholar 

  49. Zhang, W., Liu, Y., Dong, C., Qiao, Y.: Ranksrgan: Generative adversarial networks with ranker for image super-resolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3096–3105 (2019)

    Google Scholar 

  50. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 286–301 (2018)

    Google Scholar 

  51. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2472–2481 (2018)

    Google Scholar 

  52. Zhao, P., Liu, S., Wang, Y., Lin, X.: An ADMM-based universal framework for adversarial attacks on deep neural networks. In: Proceedings of the 26th ACM International Conference on Multimedia, pp. 1065–1073 (2018)

    Google Scholar 

  53. Zhong, Z., Shen, T., Yang, Y., Lin, Z., Zhang, C.: Joint sub-bands learning with clique structures for wavelet domain super-resolution. Adv. Neural Inf. Process. Syst. 31, 165–175 (2018)

    Google Scholar 

  54. Zhou, Y., Deng, W., Tong, T., Gao, Q.: Guided frequency separation network for real-world super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 428–429 (2020)

    Google Scholar 

Download references

Acknowledgement

This research is supported by Singapore Ministry of Education (MOE) Academic Research Fund Tier 1 T1251RES1819.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Yao .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 18365 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Ji, B., Hao, J., Yao, A. (2022). Perception-Distortion Balanced ADMM Optimization for Single-Image Super-Resolution. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13678. Springer, Cham. https://doi.org/10.1007/978-3-031-19797-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19797-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19796-3

  • Online ISBN: 978-3-031-19797-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics