Skip to main content

Shift-Tolerant Perceptual Similarity Metric

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13678))

Included in the following conference series:

Abstract

Existing perceptual similarity metrics assume an image and its reference are well aligned. As a result, these metrics are often sensitive to a small alignment error that is imperceptible to the human eyes. This paper studies the effect of small misalignment, specifically a small shift between the input and reference image, on existing metrics, and accordingly develops a shift-tolerant similarity metric. This paper builds upon LPIPS, a widely used learned perceptual similarity metric, and explores architectural design considerations to make it robust against imperceptible misalignment. Specifically, we study a wide spectrum of neural network elements, such as anti-aliasing filtering, pooling, striding, padding, and skip connection, and discuss their roles in making a robust metric. Based on our studies, we develop a new deep neural network-based perceptual similarity metric. Our experiments show that our metric is tolerant to imperceptible shifts while being consistent with the human similarity judgment. Code is available at https://tinyurl.com/5n85r28r.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Athalye, A., Carlini, N., Wagner, D.: Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples. In: International Conference on Machine Learning. vol. 80, pp. 274–283 (2018)

    Google Scholar 

  2. Azulay, A., Weiss, Y.: Why do deep convolutional networks generalize so poorly to small image transformations? J. Mach. Learn. Res. 20(184), 1–25 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Bhardwaj, S., Fischer, I., Ballé, J., Chinen, T.: An unsupervised information-theoretic perceptual quality metric. In: Advances in Neural Information Processing Systems, pp. 13–24 (2020)

    Google Scholar 

  4. CLIC: Workshop and challenge on learned image compression (2021). http://www.compression.cc/2021/

  5. Czolbe, S., Krause, O., Cox, I., Igel, C.: A loss function for generative neural networks based on Watson’s perceptual model. In: Advances in Neural Information Processing Systems, pp. 2051–2061 (2020)

    Google Scholar 

  6. Ding, K., Ma, K., Wang, S., Simoncelli, E.P.: Image quality assessment: Unifying structure and texture similarity. IEEE Trans. Pattern Anal. Mach. Intell., 1 (2020)

    Google Scholar 

  7. Dosovitskiy, A., Brox, T.: Generating images with perceptual similarity metrics based on deep networks. In: Advances in Neural Information Processing Systems, pp. 658–666 (2016)

    Google Scholar 

  8. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results. Int. J. Comput. Vision 88(2), 303–338 (2010)

    Article  Google Scholar 

  9. Jinjin, G., Haoming, C., Haoyu, C., Xiaoxing, Y., Ren, J.S., Chao, D.: PIPAL: a large-scale image quality assessment dataset for perceptual image restoration. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 633–651. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_37

    Chapter  Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. Hénaff, O.J., Simoncelli, E.P.: Geodesics of learned representations. In: International Conference on Learning Representations (2016)

    Google Scholar 

  12. Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: Squeezenet: Alexnet-level accuracy with 50x fewer parameters and \(<\)0.5mb model size. arXiv/1602.07360 (2016)

    Google Scholar 

  13. Islam, M.A., Jia, S., Bruce, N.D.B.: How much position information do convolutional neural networks encode? In: International Conference on Learning Representations (2020)

    Google Scholar 

  14. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  15. Kayhan, O.S., Gemert, J.C.v.: On translation invariance in CNNs: convolutional layers can exploit absolute spatial location. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 14262–14273 (2020)

    Google Scholar 

  16. Kettunen, M., Härkönen, E., Lehtinen, J.: E-LPIPS: robust perceptual image similarity via random transformation ensembles. arXiv/1906.03973 (2019)

    Google Scholar 

  17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1106–1114 (2012)

    Google Scholar 

  18. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. arXiv/1609.04802 (2016)

    Google Scholar 

  19. Lee, J., Yang, J., Wang, Z.: What does CNN shift invariance look like? a visualization study. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12539, pp. 196–210. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-68238-5_15

    Chapter  Google Scholar 

  20. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  21. Ma, K., Duanmu, Z., Wang, Z.: Geometric transformation invariant image quality assessment using convolutional neural networks. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6732–6736 (2018)

    Google Scholar 

  22. Medin, D.L., Goldstone, R.L., Gentner, D.: Respects for similarity. Psychol. Rev. 100(2), 254 (1993)

    Article  Google Scholar 

  23. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: International Conference on Machine Learning, pp. 807–814 (2010)

    Google Scholar 

  24. Niklaus, S., Mai, L., Liu, F.: Video frame interpolation via adaptive separable convolution. In: IEEE International Conference on Computer Vision, pp. 261–270 (2017)

    Google Scholar 

  25. Prashnani, E., Cai, H., Mostofi, Y., Sen, P.: Pieapp: perceptual image-error assessment through pairwise preference. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1808–1817 (2018)

    Google Scholar 

  26. Sajjadi, M.S.M., Schölkopf, B., Hirsch, M.: EnhanceNet: single image super-resolution through automated texture synthesis. arXiv/1612.07919 (2016)

    Google Scholar 

  27. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (2015)

    Google Scholar 

  28. Tversky, A.: Features of similarity. Psychol. Rev. 84(4), 327 (1977)

    Article  Google Scholar 

  29. Vasconcelos, C., Larochelle, H., Dumoulin, V., Romijnders, R., Roux, N.L., Goroshin, R.: Impact of aliasing on generalization in deep convolutional networks. In: IEEE International Conference on Computer Vision (2021)

    Google Scholar 

  30. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  31. Wang, Z., Simoncelli, E.P.: Translation insensitive image similarity in complex wavelet domain. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2, pp. ii–573 (2005)

    Google Scholar 

  32. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: Asilomar Conference on Signals, Systems & Computers, vol. 2, pp. 1398–1402. IEEE (2003)

    Google Scholar 

  33. Watson, A.B.: DCT quantization matrices visually optimized for individual images. In: Human vision, visual processing, and digital display IV, vol. 1913, pp. 202–216. International Society for Optics and Photonics (1993)

    Google Scholar 

  34. Xiao, C., Zhu, J.Y., Li, B., He, W., Liu, M., Song, D.: Spatially transformed adversarial examples. In: International Conference on Learning Representations (2018)

    Google Scholar 

  35. Zhang, L., Zhang, L., Mou, X., Zhang, D.: Fsim: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, R.: Making convolutional networks shift-invariant again. In: International Conference on Machine Learning, pp. 7324–7334 (2019)

    Google Scholar 

  37. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  38. Zhu, J.-Y., Krähenbühl, P., Shechtman, E., Efros, A.A.: Generative visual manipulation on the natural image manifold. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 597–613. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_36

    Chapter  Google Scholar 

  39. Zou, X., Xiao, F., Yu, Z., Lee, Y.J.: Delving deeper into anti-aliasing in convnets. In: British Machine Vision Conference (2020)

    Google Scholar 

Download references

Acknowledgments

Figure 1 uses frames from https://www.youtube.com/watch?v=jW7pFhkVNYY under a Creative Commons license.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijay Ghildyal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghildyal, A., Liu, F. (2022). Shift-Tolerant Perceptual Similarity Metric. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13678. Springer, Cham. https://doi.org/10.1007/978-3-031-19797-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19797-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19796-3

  • Online ISBN: 978-3-031-19797-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics