Skip to main content

Boosting Supervised Dehazing Methods via Bi-level Patch Reweighting

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13678))

Included in the following conference series:

Abstract

Natural images can suffer from non-uniform haze distributions in different regions. However, this important fact is hardly considered in existing supervised dehazing methods, in which all training patches are accounted for equally in the loss design. These supervised methods may fail in making promising recoveries on some regions contaminated by heavy hazes. Therefore, for a more reasonable dehazing losses design, the varying importance of different training patches should be taken into account. Such rationale is exactly in line with the process of human learning that difficult concepts always require more practice in learning. To this end, we propose a bi-level dehazing (BILD) framework by designing an internal loop for weighted supervised dehazing and an external loop for training patch reweighting. With simple derivations, we show the gradients of BILD exhibit natural connections with policy gradient and can thus explain the BILD objective by the rewarding mechanism in reinforcement learning. The BILD is not a new dehazing method per se, it is better recognized as a flexible framework that can seamlessly work with general supervised dehazing approaches for their performance boosting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ancuti, C.O., Ancuti, C., Timofte, R.: NH-HAZE: an image dehazing benchmark with non-homogeneous hazy and haze-free images. In: CVPRW (2020)

    Google Scholar 

  2. Ancuti, C.O., Ancuti, C., Timofte, R., Vleeschouwer, C.D.: O-haze: a dehazing benchmark with real hazy and haze-free outdoor images. In: CVPRW (2018)

    Google Scholar 

  3. Ancuti, C.O., Ancuti, C., Vasluianu, F.A., Timofte, R., et al.: NTIRE 2020 challenge on nonhomogeneous dehazing. In: CVPRW (2020)

    Google Scholar 

  4. Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures using reinforcement learning. arXiv preprint arXiv:1611.02167 (2016)

  5. Berman, D., Treibitz, T., Avidan, S.: Air-light estimation using haze-lines. In: ICCP, pp. 1–9 (2017)

    Google Scholar 

  6. Berman, D., Treibitz, T., Avidan, S.: Single image dehazing using haze-lines. IEEE TPAMI 42(3), 720–734 (2018)

    Article  Google Scholar 

  7. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)

  8. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: Dehazenet: An end-to-end system for single image haze removal. IEEE TIP 25(11), 5187–5198 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Chen, Y., Li, W., Sakaridis, C., Dai, D., Van Gool, L.: Domain adaptive faster r-cnn for object detection in the wild. In: CVPR, pp. 3339–3348 (2018)

    Google Scholar 

  10. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment: Learning augmentation strategies from data. In: CVPR, pp. 113–123 (2019)

    Google Scholar 

  11. Deng, Z., et al.: Deep multi-model fusion for single-image dehazing. In: ICCV, pp. 2453–2462 (2019)

    Google Scholar 

  12. Dong, H., Pan, J., Xiang, L., Hu, Z., Zhang, X., Wang, F., Yang, M.H.: Multi-scale boosted dehazing network with dense feature fusion. In: CVPR, pp. 2157–2167 (2020)

    Google Scholar 

  13. Dong, J., Pan, J.: Physics-based feature dehazing networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 188–204. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_12

    Chapter  Google Scholar 

  14. Franceschi, L., Niepert, M., Pontil, M., He, X.: Learning discrete structures for graph neural networks. In: ICML, pp. 1972–1982 (2019)

    Google Scholar 

  15. Gao, Y., Yang, H., Zhang, P., Zhou, C., Hu, Y.: Graphnas: Graph neural architecture search with reinforcement learning. arXiv preprint arXiv:1904.09981 (2019)

  16. Grazzi, R., Franceschi, L., Pontil, M., Salzo, S.: On the iteration complexity of hypergradient computation. In: ICML, pp. 3748–3758 (2020)

    Google Scholar 

  17. Haarnoja, T., Tang, H., Abbeel, P., Levine, S.: Reinforcement learning with deep energy-based policies. In: ICML, pp. 1352–1361 (2017)

    Google Scholar 

  18. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In: ICML, pp. 1861–1870 (2018)

    Google Scholar 

  19. Haarnoja, T., et al.: Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905 (2018)

  20. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE TPAMI 33(12), 2341–2353 (2010)

    Google Scholar 

  21. Hong, M., Xie, Y., Li, C., Qu, Y.: Distilling image dehazing with heterogeneous task imitation. In: CVPR, pp. 3462–3471 (2020)

    Google Scholar 

  22. Kohavi, R., et al.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: IJCAI, pp. 1137–1145 (1995)

    Google Scholar 

  23. Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: Aod-net: All-in-one dehazing network. In: ICCV, pp. 4770–4778 (2017)

    Google Scholar 

  24. Li, B., et al.: Benchmarking single-image dehazing and beyond. IEEE TIP 28(1), 492–505 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Liu, R., Liu, J., Jiang, Z., Fan, X., Luo, Z.: A bilevel integrated model with data-driven layer ensemble for multi-modality image fusion. IEEE TIP 30, 1261–1274 (2020)

    Google Scholar 

  26. Liu, X., Ma, Y., Shi, Z., Chen, J.: Griddehazenet: Attention-based multi-scale network for image dehazing. In: ICCV, pp. 7314–7323 (2019)

    Google Scholar 

  27. Liu, Z., Wei, P., Jiang, J., Cao, W., Bian, J., Chang, Y.: Mesa: Boost ensemble imbalanced learning with meta-sampler. In: NeurIPS, vol. 33 (2020)

    Google Scholar 

  28. Meng, G., Wang, Y., Duan, J., Xiang, S., Pan, C.: Efficient image dehazing with boundary constraint and contextual regularization. In: ICCV, pp. 617–624 (2013)

    Google Scholar 

  29. Mounsaveng, S., Laradji, I., Ben Ayed, I., Vázquez, D., Pedersoli, M.: Learning data augmentation with online bilevel optimization for image classification. In: WACV, pp. 1691–1700 (2021)

    Google Scholar 

  30. Narasimhan, S.G., Nayar, S.K.: Chromatic framework for vision in bad weather. In: CVPR, pp. 598–605 (2000)

    Google Scholar 

  31. Narasimhan, S.G., Nayar, S.K.: Vision and the atmosphere. IJCV 48(3), 233–254 (2002)

    Google Scholar 

  32. Qin, X., Wang, Z., Bai, Y., Xie, X., Jia, H.: Ffa-net: Feature fusion attention network for single image dehazing. In: AAAI, pp. 11908–11915 (2020)

    Google Scholar 

  33. Qu, Y., Chen, Y., Huang, J., Xie, Y.: Enhanced pix2pix dehazing network. In: CVPR, pp. 8160–8168 (2019)

    Google Scholar 

  34. Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., Yang, M.-H.: Single image dehazing via multi-scale convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 154–169. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_10

    Chapter  Google Scholar 

  35. Ren, W., Ma, L., Zhang, J., Pan, J., Cao, X., Liu, W., Yang, M.H.: Gated fusion network for single image dehazing. In: CVPR, pp. 3253–3261 (2018)

    Google Scholar 

  36. Shao, Y., Li, L., Ren, W., Gao, C., Sang, N.: Domain adaptation for image dehazing. In: CVPR, pp. 2808–2817 (2020)

    Google Scholar 

  37. Shu, J., et al.: Meta-weight-net: Learning an explicit mapping for sample weighting. arXiv preprint arXiv:1902.07379 (2019)

  38. Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., Riedmiller, M.: Deterministic policy gradient algorithms. In: ICML, pp. 387–395 (2014)

    Google Scholar 

  39. Sun, M., Dou, H., Li, B., Yan, J., Ouyang, W., Cui, L.: Autosampling: Search for effective data sampling schedules. In: ICML, pp. 9923–9933 (2021)

    Google Scholar 

  40. Sutton, R.S., McAllester, D.A., Singh, S.P., Mansour, Y.: Policy gradient methods for reinforcement learning with function approximation. In: NeurIPS, pp. 1057–1063 (2000)

    Google Scholar 

  41. Tian, K., Lin, C., Sun, M., Zhou, L., Yan, J., Ouyang, W.: Improving auto-augment via augmentation-wise weight sharing. arXiv preprint arXiv:2009.14737 (2020)

  42. Wang, X., Pham, H., Michel, P., Anastasopoulos, A., Carbonell, J., Neubig, G.: Optimizing data usage via differentiable rewards. In: ICML, pp. 9983–9995 (2020)

    Google Scholar 

  43. Wu, H., et al.: Contrastive learning for compact single image dehazing. In: CVPR, pp. 10551–10560 (2021)

    Google Scholar 

  44. Wu, X., et al.: Temporally correlated task scheduling for sequence learning. In: ICML, pp. 11274–11284 (2021)

    Google Scholar 

  45. Zhang, H., Patel, V.M.: Densely connected pyramid dehazing network. In: CVPR, pp. 3194–3203 (2018)

    Google Scholar 

  46. Zheng, Z., et al.: Ultra-high-definition image dehazing via multi-guided bilateral learning. In: CVPR, pp. 16180–16189 (2021)

    Google Scholar 

  47. Zhu, Q., Mai, J., Shao, L.: A fast single image haze removal algorithm using color attenuation prior. IEEE TIP 24(11), 3522–3533 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This research is supported by National Natural Science Foundation of China (Grant No.62031001, Grant No.61971020), National Key Research and Development Program of China (No.2020AAA0105502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Deng .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 8760 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, X., Dou, H., Fu, C., Dai, B., Xu, T., Deng, Y. (2022). Boosting Supervised Dehazing Methods via Bi-level Patch Reweighting. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13678. Springer, Cham. https://doi.org/10.1007/978-3-031-19797-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19797-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19796-3

  • Online ISBN: 978-3-031-19797-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics