Abstract
Event cameras respond to scene dynamics and offer advantages to estimate motion. Following recent image-based deep-learning achievements, optical flow estimation methods for event cameras have rushed to combine those image-based methods with event data. However, it requires several adaptations (data conversion, loss function, etc.) as they have very different properties. We develop a principled method to extend the Contrast Maximization framework to estimate optical flow from events alone. We investigate key elements: how to design the objective function to prevent overfitting, how to warp events to deal better with occlusions, and how to improve convergence with multi-scale raw events. With these key elements, our method ranks first among unsupervised methods on the MVSEC benchmark, and is competitive on the DSEC benchmark. Moreover, our method allows us to expose the issues of the ground truth flow in those benchmarks, and produces remarkable results when it is transferred to unsupervised learning settings. Our code is available at https://github.com/tub-rip/event_based_optical_flow.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akolkar, H., Ieng, S.H., Benosman, R.: Real-time high speed motion prediction using fast aperture-robust event-driven visual flow. IEEE Trans. Pattern Anal. Mach. Intell. 44(1), 361–372 (2022). https://doi.org/10.1109/TPAMI.2020.3010468
Bardow, P., Davison, A.J., Leutenegger, S.: Simultaneous optical flow and intensity estimation from an event camera. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 884–892 (2016). https://doi.org/10.1109/CVPR.2016.102
Benosman, R., Clercq, C., Lagorce, X., Ieng, S.H., Bartolozzi, C.: Event-based visual flow. IEEE Trans. Neural Netw. Learn. Syst. 25(2), 407–417 (2014). https://doi.org/10.1109/TNNLS.2013.2273537
Benosman, R., Ieng, S.H., Clercq, C., Bartolozzi, C., Srinivasan, M.: Asynchronous frameless event-based optical flow. Neural Netw. 27, 32–37 (2012). https://doi.org/10.1016/j.neunet.2011.11.001
Brebion, V., Moreau, J., Davoine, F.: Real-time optical flow for vehicular perception with low- and high-resolution event cameras. IEEE Trans. Intell. Transport. Syst. 23, 1–13 (2021). https://doi.org/10.1109/TITS.2021.3136358
Brosch, T., Tschechne, S., Neumann, H.: On event-based optical flow detection. Front. Neurosci. 9, 137 (2015). https://doi.org/10.3389/fnins.2015.00137
Cannici, M., Ciccone, M., Romanoni, A., Matteucci, M.: A differentiable recurrent surface for asynchronous event-based data. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 136–152. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_9
Charbonnier, P., Blanc-Feraud, L., Aubert, G., Barlaud, M.: Deterministic edge-preserving regularization in computed imaging. IEEE Trans. Image Process. 6(2), 298–311 (1997). https://doi.org/10.1109/83.551699
Delmerico, J., Cieslewski, T., Rebecq, H., Faessler, M., Scaramuzza, D.: Are we ready for autonomous drone racing? the UZH-FPV drone racing dataset. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 6713–6719 (2019). https://doi.org/10.1109/ICRA.2019.8793887
Ding, Z., et al.: Spatio-temporal recurrent networks for event-based optical flow estimation. In: AAAI Conference on Artificial intelligence, vol. 36(1), pp. 525–533 (2022)
Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics. American Mathematical Society (2010)
Gallego, G., et al.: Event-based vision: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(1), 154–180 (2022). https://doi.org/10.1109/TPAMI.2020.3008413
Gallego, G., Gehrig, M., Scaramuzza, D.: Focus is all you need: Loss functions for event-based vision. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12272–12281 (2019). https://doi.org/10.1109/CVPR.2019.01256
Gallego, G., Rebecq, H., Scaramuzza, D.: A unifying contrast maximization framework for event cameras, with applications to motion, depth, and optical flow estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3867–3876 (2018). https://doi.org/10.1109/CVPR.2018.00407
Gallego, G., Scaramuzza, D.: Accurate angular velocity estimation with an event camera. IEEE Robot. Autom. Lett. 2(2), 632–639 (2017). https://doi.org/10.1109/LRA.2016.2647639
Gehrig, D., Loquercio, A., Derpanis, K.G., Scaramuzza, D.: End-to-end learning of representations for asynchronous event-based data. In: Conference on Computer Vision (ICCV), pp. 5632–5642 (2019). https://doi.org/10.1109/ICCV.2019.00573
Gehrig, M., Aarents, W., Gehrig, D., Scaramuzza, D.: DSEC: A stereo event camera dataset for driving scenarios. IEEE Robot. Autom. Lett. 6(3), 4947–4954 (2021). https://doi.org/10.1109/LRA.2021.3068942
Gehrig, M., Millhäusler, M., Gehrig, D., Scaramuzza, D.: E-RAFT: Dense optical flow from event cameras. In: International Conference on 3D Vision (3DV), pp. 197–206 (2021). https://doi.org/10.1109/3DV53792.2021.00030
Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Pearson Education (2009)
Gu, C., Learned-Miller, E., Sheldon, D., Gallego, G., Bideau, P.: The spatio-temporal Poisson point process: A simple model for the alignment of event camera data. In: International Conference on Computer Vision (ICCV), pp. 13495–13504 (2021). https://doi.org/10.1109/ICCV48922.2021.01324
Hagenaars, J.J., Paredes-Valles, F., de Croon, G.C.H.E.: Self-supervised learning of event-based optical flow with spiking neural networks. In: Advances in Neural Information Processing Systems (NeurIPS). vol. 34, pp. 7167–7179 (2021). https://doi.org/10.48550/arXiv.2106.01862
Kim, H., Kim, H.J.: Real-time rotational motion estimation with contrast maximization over globally aligned events. IEEE Robot. Autom. Lett. 6(3), 6016–6023 (2021). https://doi.org/10.1109/LRA.2021.3088793
Lagorce, X., Orchard, G., Gallupi, F., Shi, B.E., Benosman, R.: HOTS: A hierarchy of event-based time-surfaces for pattern recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(7), 1346–1359 (2017). https://doi.org/10.1109/TPAMI.2016.2574707
Lee, C., Kosta, A.K., Zhu, A.Z., Chaney, K., Daniilidis, K., Roy, K.: Spike-flownet: Event-based optical flow estimation with energy-efficient hybrid neural networks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 366–382. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_22
Li, H., Li, G., Shi, L.: Super-resolution of spatiotemporal event-stream image. Neurocomputing 335, 206–214 (2019). https://doi.org/10.1016/j.neucom.2018.12.048
Liu, M., Delbruck, T.: Adaptive time-slice block-matching optical flow algorithm for dynamic vision sensors. In: British Machine Vision Conference (BMVC), pp. 1–12 (2018)
Mitrokhin, A., Fermuller, C., Parameshwara, C., Aloimonos, Y.: Event-based moving object detection and tracking. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1–9 (2018). https://doi.org/10.1109/IROS.2018.8593805
Mueggler, E., Rebecq, H., Gallego, G., Delbruck, T., Scaramuzza, D.: The event-camera dataset and simulator: Event-based data for pose estimation, visual odometry, and SLAM. Int. J. Robot. Research 36(2), 142–149 (2017). https://doi.org/10.1177/0278364917691115
Nagata, J., Sekikawa, Y., Aoki, Y.: Optical flow estimation by matching time surface with event-based cameras. Sensors 21(4) (2021). https://doi.org/10.3390/s21041150
Nunes, U.M., Demiris, Y.: Robust event-based vision model estimation by dispersion minimisation. IEEE Trans. Pattern Anal. Mach. Intell. (2021). https://doi.org/10.1109/TPAMI.2021.3130049
Orchard, G., Benosman, R., Etienne-Cummings, R., Thakor, N.V.: A spiking neural network architecture for visual motion estimation. In: IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 298–301 (2013). https://doi.org/10.1109/biocas.2013.6679698
Parameshwara, C.M., Sanket, N.J., Singh, C.D., Fermüller, C., Aloimonos, Y.: 0-MMS: Zero-shot multi-motion segmentation with a monocular event camera. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 9594–9600 (2021). https://doi.org/10.1109/ICRA48506.2021.9561755
Paredes-Valles, F., de Croon, G.C.H.E.: Back to event basics: Self-supervised learning of image reconstruction for event cameras via photometric constancy. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3445–3454 (2021). https://doi.org/10.1109/CVPR46437.2021.00345
Peng, X., Gao, L., Wang, Y., Kneip, L.: Globally-optimal contrast maximisation for event cameras. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3479–3495 (2022). https://doi.org/10.1109/TPAMI.2021.3053243
Posch, C., Serrano-Gotarredona, T., Linares-Barranco, B., Delbruck, T.: Retinomorphic event-based vision sensors: Bioinspired cameras with spiking output. Proc. IEEE 102(10), 1470–1484 (2014). https://doi.org/10.1109/jproc.2014.2346153
Rebecq, H., Gallego, G., Mueggler, E., Scaramuzza, D.: EMVS: Event-based multi-view stereo–3D reconstruction with an event camera in real-time. Int. J. Comput. Vis. 126(12), 1394–1414 (2018). https://doi.org/10.1007/s11263-017-1050-6
Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992). https://doi.org/10.1016/0167-2789(92)90242-F
Seok, H., Lim, J.: Robust feature tracking in dvs event stream using Bezier mapping. In: IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1647–1656 (2020). https://doi.org/10.1109/WACV45572.2020.9093607
Sethian, J.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press, Cambridge Monographs on Applied and Computational Mathematics (1999)
Shiba, S., Aoki, Y., Gallego, G.: Event collapse in contrast maximization frameworks. Sensors 22(14), 1–20 (2022). https://doi.org/10.3390/s22145190
Stoffregen, T., Gallego, G., Drummond, T., Kleeman, L., Scaramuzza, D.: Event-based motion segmentation by motion compensation. In: International Conference on Computer Vision (ICCV), pp. 7243–7252 (2019). https://doi.org/10.1109/ICCV.2019.00734
Stoffregen, T., Kleeman, L.: Simultaneous optical flow and segmentation (SOFAS) using Dynamic Vision Sensor. In: Australasian Conference on Robotics and Automation (ACRA) (2017)
Stoffregen, T., Kleeman, L.: Event cameras, contrast maximization and reward functions: an analysis. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12292–12300 (2019). https://doi.org/10.1109/CVPR.2019.01258
Stoffregen, T., et al.: Reducing the sim-to-real gap for event cameras. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12372, pp. 534–549. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58583-9_32
Sun, D., Roth, S., Black, M.J.: A quantitative analysis of current practices in optical flow estimation and the principles behind them. Int. J. Comput. Vis. 106(2), 115–137 (2013). https://doi.org/10.1007/s11263-013-0644-x
Taverni, G., et al.: Front and back illuminated Dynamic and Active Pixel Vision Sensors comparison. IEEE Trans. Circuits Syst. II 65(5), 677–681 (2018). https://doi.org/10.1109/TCSII.2018.2824899
Teed, Z., Deng, J.: RAFT: Recurrent all pairs field transforms for optical flow. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 402–419. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_24
Trucco, E., Verri, A.: Introductory Techniques for 3-D Computer Vision. Prentice Hall PTR, Upper Saddle River, NJ, USA (1998)
Ye, C., Mitrokhin, A., Parameshwara, C., Fermüller, C., Yorke, J.A., Aloimonos, Y.: Unsupervised learning of dense optical flow, depth and egomotion with event-based sensors. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5831–5838 (2020). https://doi.org/10.1109/IROS45743.2020.9341224
Zhang, Z., Yezzi, A., Gallego, G.: Image reconstruction from events. Why learn it? arXiv e-prints (2021). https://doi.org/10.48550/arXiv.2112.06242
Zhou, Y., Gallego, G., Lu, X., Liu, S., Shen, S.: Event-based motion segmentation with spatio-temporal graph cuts. IEEE Trans. Neural Netw. Learn. Syst. 1–13 (2021). https://doi.org/10.1109/TNNLS.2021.3124580
Zhu, A.Z., Atanasov, N., Daniilidis, K.: Event-based feature tracking with probabilistic data association. In: IEEE International Conference on Intelligent Robots and Systems (ICRA), pp. 4465–4470 (2017). https://doi.org/10.1109/ICRA.2017.7989517
Zhu, A.Z., Atanasov, N., Daniilidis, K.: Event-based visual inertial odometry. In: IEEE Conf. Comput. Vis. Pattern Recog. (CVPR). pp. 5816–5824 (2017). https://doi.org/10.1109/CVPR.2017.616
Zhu, A.Z., Thakur, D., Ozaslan, T., Pfrommer, B., Kumar, V., Daniilidis, K.: The multivehicle stereo event camera dataset: An event camera dataset for 3D perception. IEEE Robot. Autom. Lett. 3(3), 2032–2039 (2018). https://doi.org/10.1109/lra.2018.2800793
Zhu, A.Z., Yuan, L., Chaney, K., Daniilidis, K.: EV-FlowNet: Self-supervised optical flow estimation for event-based cameras. In: Robotics: Science and Systems (RSS) (2018). https://doi.org/10.15607/RSS.2018.XIV.062
Zhu, A.Z., Yuan, L., Chaney, K., Daniilidis, K.: Unsupervised event-based learning of optical flow, depth, and egomotion. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 989–997 (2019). https://doi.org/10.1109/CVPR.2019.00108
Acknowledgements
We thank Prof. A. Yezzi and Dr. A. Zhu for useful discussions. Funded by the German Academic Exchange Service (DAAD), Research Grant - Bi-nationally Supervised Doctoral Degrees/Cotutelle, 2021/22 (57552338). Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC 2002/1 “Science of Intelligence” - project number 390523135.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Shiba, S., Aoki, Y., Gallego, G. (2022). Secrets of Event-Based Optical Flow. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13678. Springer, Cham. https://doi.org/10.1007/978-3-031-19797-0_36
Download citation
DOI: https://doi.org/10.1007/978-3-031-19797-0_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19796-3
Online ISBN: 978-3-031-19797-0
eBook Packages: Computer ScienceComputer Science (R0)