Abstract
In this paper, we consider two challenging issues in reference-based super-resolution (RefSR), (i) how to choose a proper reference image, and (ii) how to learn real-world RefSR in a self-supervised manner. Particularly, we present a novel self-supervised learning approach for real-world image SR from observations at dual camera zooms (SelfDZSR). Considering the popularity of multiple cameras in modern smartphones, the more zoomed (telephoto) image can be naturally leveraged as the reference to guide the SR of the lesser zoomed (short-focus) image. Furthermore, SelfDZSR learns a deep network to obtain the SR result of short-focus image to have the same resolution as the telephoto image. For this purpose, we take the telephoto image instead of an additional high-resolution image as the supervision information and select a center patch from it as the reference to super-resolve the corresponding short-focus image patch. To mitigate the effect of the misalignment between short-focus low-resolution (LR) image and telephoto ground-truth (GT) image, we design an auxiliary-LR generator and map the GT to an auxiliary-LR while keeping the spatial position unchanged. Then the auxiliary-LR can be utilized to deform the LR features by the proposed adaptive spatial transformer networks (AdaSTN), and match the Ref features to GT. During testing, SelfDZSR can be directly deployed to super-solve the whole short-focus image with the reference of telephoto image. Experiments show that our method achieves better quantitative and qualitative performance against state-of-the-arts. Codes are available at https://github.com/cszhilu1998/SelfDZSR.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bell-Kligler, S., Shocher, A., Irani, M.: Blind super-resolution kernel estimation using an internal-gan. In: NeurIPS, pp. 284–293 (2019)
Cai, J., Gu, S., Timofte, R., Zhang, L.: Ntire 2019 challenge on real image super-resolution: Methods and results. In: CVPR Workshops (2019)
Cai, J., Zeng, H., Yong, H., Cao, Z., Zhang, L.: Toward real-world single image super-resolution: A new benchmark and a new model. In: ICCV, pp. 3086–3095 (2019)
Chan, K.C., Wang, X., Yu, K., Dong, C., Loy, C.C.: Understanding deformable alignment in video super-resolution. In: AAAI, pp. 973–981 (2021)
Chen, C., Xiong, Z., Tian, X., Zha, Z.J., Wu, F.: Camera lens super-resolution. In: CVPR, pp. 1652–1660 (2019)
Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable convolutional networks. In: ICCV, pp. 764–773 (2017)
Delbracio, M., Talebi, H., Milanfar, P.: Projected distribution loss for image enhancement. arXiv preprint arXiv:2012.09289 (2020)
Deshpande, I., Zhang, Z., Schwing, A.G.: Generative modeling using the sliced wasserstein distance. In: CVPR, pp. 3483–3491 (2018)
Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using real nvp. In: ICLR (2017)
Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE PAMI 38(2), 295–307 (2015)
Dosovitskiy, A., et al.: Flownet: Learning optical flow with convolutional networks. In: ICCV, pp. 2758–2766 (2015)
Geng, Z., Sun, K., Xiao, B., Zhang, Z., Wang, J.: Bottom-up human pose estimation via disentangled keypoint regression. In: CVPR, pp. 14676–14686 (2021)
Gu, J., Lu, H., Zuo, W., Dong, C.: Blind super-resolution with iterative kernel correction. In: CVPR, pp. 1604–1613 (2019)
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR, pp. 9729–9738 (2020)
Heitz, E., Vanhoey, K., Chambon, T., Belcour, L.: A sliced wasserstein loss for neural texture synthesis. In: CVPR, pp. 9412–9420 (2021)
Hui, Z., Gao, X., Yang, Y., Wang, X.: Lightweight image super-resolution with information multi-distillation network. In: ACM MM, pp. 2024–2032 (2019)
Hussein, S.A., Tirer, T., Giryes, R.: Correction filter for single image super-resolution: Robustifying off-the-shelf deep super-resolvers. In: CVPR, pp. 1428–1437 (2020)
Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: NeurIPS, pp. 2017–2025 (2015)
Jiang, Y., Chan, K.C., Wang, X., Loy, C.C., Liu, Z.: Robust reference-based super-resolution via c2-matching. In: CVPR, pp. 2103–2112 (2021)
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR (2015)
Kong, X., Zhao, H., Qiao, Y., Dong, C.: Classsr: A general framework to accelerate super-resolution networks by data characteristic. In: CVPR, pp. 12016–12025 (2021)
Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR, pp. 4681–4690 (2017)
Liang, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: Mutual affine network for spatially variant kernel estimation in blind image super-resolution. In: ICCV, pp. 4096–4105 (2021)
Liang, J., Zhang, K., Gu, S., Van Gool, L., Timofte, R.: Flow-based kernel prior with application to blind super-resolution. In: CVPR, pp. 10601–10610 (2021)
Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: CVPR Workshops, pp. 136–144 (2017)
Liu, M., Zhang, Z., Hou, L., Zuo, W., Zhang, L.: Deep adaptive inference networks for single image super-resolution. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12538, pp. 131–148. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66823-5_8
Lu, L., Li, W., Tao, X., Lu, J., Jia, J.: Masa-sr: Matching acceleration and spatial adaptation for reference-based image super-resolution. In: CVPR, pp. 6368–6377 (2021)
Lugmayr, A., Danelljan, M., Timofte, R.: Ntire 2020 challenge on real-world image super-resolution: Methods and results. In: CVPR Workshops, pp. 494–495 (2020)
Lugmayr, A., Danelljan, M., Timofte, R., Fritsche, M., et al.: Aim 2019 challenge on real-world image super-resolution: Methods and results. In: ICCV Workshops, pp. 3575–3583. IEEE (2019)
Luo, Z., Huang, Y., Li, S., Wang, L., Tan, T.: Unfolding the alternating optimization for blind super resolution. In: NeurIPS (2020)
Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning library. In: NeurIPS, pp. 8024–8035 (2019)
Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: CVPR, pp. 1874–1883 (2016)
Shim, G., Park, J., Kweon, I.S.: Robust reference-based super-resolution with similarity-aware deformable convolution. In: CVPR, pp. 8425–8434 (2020)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2014)
Sun, D., Yang, X., Liu, M.Y., Kautz, J.: Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume. In: CVPR, pp. 8934–8943 (2018)
Wang, L., et al.: Exploring sparsity in image super-resolution for efficient inference. In: CVPR, pp. 4917–4926 (2021)
Wang, L., et al.: Unsupervised degradation representation learning for blind super-resolution. In: CVPR, pp. 10581–10590 (2021)
Wang, T., Xie, J., Sun, W., Yan, Q., Chen, Q.: Dual-camera super-resolution with aligned attention modules. In: ICCV, pp. 2001–2010 (2021)
Wang, X., Xie, L., Dong, C., Shan, Y.: Real-esrgan: Training real-world blind super-resolution with pure synthetic data. In: ICCV Workshops, pp. 1905–1914 (2021)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE TIP 13(4), 600–612 (2004)
Wei, P., et al.: AIM 2020 challenge on real image super-resolution: methods and results. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12537, pp. 392–422. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-67070-2_24
Wei, P., et al.: Component divide-and-conquer for real-world image super-resolution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 101–117. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_7
Wei, Y., Gu, S., Li, Y., Timofte, R., Jin, L., Song, H.: Unsupervised real-world image super resolution via domain-distance aware training. In: CVPR, pp. 13385–13394 (2021)
Wu, J., et al.: Sliced wasserstein generative models. In: CVPR, pp. 3713–3722 (2019)
Xie, W., Song, D., Xu, C., Xu, C., Zhang, H., Wang, Y.: Learning frequency-aware dynamic network for efficient super-resolution. In: ICCV, pp. 4308–4317 (2021)
Xie, Y., Xiao, J., Sun, M., Yao, C., Huang, K.: Feature representation matters: End-to-end learning for reference-based image super-resolution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 230–245. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_14
Yang, F., Yang, H., Fu, J., Lu, H., Guo, B.: Learning texture transformer network for image super-resolution. In: CVPR, pp. 5791–5800 (2020)
Zhang, K., Liang, J., Van Gool, L., Timofte, R.: Designing a practical degradation model for deep blind image super-resolution. In: ICCV, pp. 4791–4800 (2021)
Zhang, K., Zuo, W., Zhang, L.: Learning a single convolutional super-resolution network for multiple degradations. In: CVPR, pp. 3262–3271 (2018)
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR, pp. 586–595 (2018)
Zhang, X., Chen, Q., Ng, R., Koltun, V.: Zoom to learn, learn to zoom. In: CVPR, pp. 3762–3770 (2019)
Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 294–310. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_18
Zhang, Y., Zhang, Z., DiVerdi, S., Wang, Z., Echevarria, J., Fu, Y.: Texture hallucination for large-factor painting super-resolution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 209–225. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_13
Zhang, Z., Wang, Z., Lin, Z., Qi, H.: Image super-resolution by neural texture transfer. In: CVPR, pp. 7982–7991 (2019)
Zhang, Z., Wang, H., Liu, M., Wang, R., Zhang, J., Zuo, W.: Learning raw-to-srgb mappings with inaccurately aligned supervision. In: ICCV, pp. 4348–4358 (2021)
Zheng, H., et al.: Learning cross-scale correspondence and patch-based synthesis for reference-based super-resolution. In: BMVC, vol. 1, p. 2 (2017)
Zheng, H., Ji, M., Wang, H., Liu, Y., Fang, L.: Crossnet: An end-to-end reference-based super resolution network using cross-scale warping. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 87–104. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_6
Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable convnets v2: More deformable, better results. In: CVPR, pp. 9308–9316 (2019)
Acknowledgement
This work was supported by Alibaba Group through Alibaba Innovative Research Program, the Major Key Project of Peng Cheng Laboratory (PCL2021A12), and the National Natural Science Foundation of China (NSFC) under Grants No.s 61872118 and U19A2073.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, Z., Wang, R., Zhang, H., Chen, Y., Zuo, W. (2022). Self-supervised Learning for Real-World Super-Resolution from Dual Zoomed Observations. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13678. Springer, Cham. https://doi.org/10.1007/978-3-031-19797-0_35
Download citation
DOI: https://doi.org/10.1007/978-3-031-19797-0_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19796-3
Online ISBN: 978-3-031-19797-0
eBook Packages: Computer ScienceComputer Science (R0)