Abstract
While significant progress has been made in deep video denoising, it remains very challenging for exploiting historical and future frames. Bidirectional recurrent networks (BiRNN) have exhibited appealing performance in several video restoration tasks. However, BiRNN is intrinsically offline because it uses backward recurrent modules to propagate from the last to current frames, which causes high latency and large memory consumption. To address the offline issue of BiRNN, we present a novel recurrent network consisting of forward and look-ahead recurrent modules for unidirectional video denoising. Particularly, look-ahead module is an elaborate forward module for leveraging information from near-future frames. When denoising the current frame, the hidden features by forward and look-ahead recurrent modules are combined, thereby making it feasible to exploit both historical and near-future frames. Due to the scene motion between non-neighboring frames, border pixels missing may occur when warping look-ahead feature from near-future frame to current frame, which can be largely alleviated by incorporating forward warping and proposed border enlargement. Experiments show that our method achieves state-of-the-art performance with constant latency and memory consumption. Code is avaliable at https://github.com/nagejacob/FloRNN.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdelhamed, A., Lin, S., Brown, M.S.: A high-quality denoising dataset for smartphone cameras. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1692–1700 (2018)
Arias, P., Morel, J.M.: Video denoising via empirical bayesian estimation of space-time patches. J. Math. Imaging and Vis. 60(1), 70–93 (2018)
Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 60–65. IEEE (2005)
Buades, A., Lisani, J.L., Miladinović, M.: Patch-based video denoising with optical flow estimation. IEEE Trans. Image Process. 25(6), 2573–2586 (2016)
Chan, K.C., Wang, X., Yu, K., Dong, C., Loy, C.C.: Basicvsr: The search for essential components in video super-resolution and beyond. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4947–4956 (2021)
Chan, K.C., Zhou, S., Xu, X., Loy, C.C.: Basicvsr++: Improving video super-resolution with enhanced propagation and alignment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5972–5981 (2022)
Chen, X., Song, L., Yang, X.: Deep rnns for video denoising. In: Applications of digital image processing XXXIX, vol. 9971, p. 99711T. International Society for )ptics and Photonics (2016)
Claus, M., van Gemert, J.: Videnn: Deep blind video denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)
Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)
Dai, J., et al.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 764–773 (2017)
Davy, A., Ehret, T., Morel, J.M., Arias, P., Facciolo, G.: A non-local cnn for video denoising. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 2409–2413. IEEE (2019)
Davy, A., Ehret, T., Morel, J.M., Arias, P., Facciolo, G.: Video denoising by combining patch search and cnns. J. Math. Imaging Vis. 63(1), 73–88 (2021)
Dosovitskiy, A., et al.: Flownet: Learning optical flow with convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2758–2766 (2015)
Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)
Fuoli, D., Gu, S., Timofte, R.: Efficient video super-resolution through recurrent latent space propagation. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 3476–3485. IEEE (2019)
Gu, S., Zhang, L., Zuo, W., Feng, X.: Weighted nuclear norm minimization with application to image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2862–2869 (2014)
Guo, S., Yan, Z., Zhang, K., Zuo, W., Zhang, L.: Toward convolutional blind denoising of real photographs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1712–1722 (2019)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Huang, Y., Wang, W., Wang, L.: Video super-resolution via bidirectional recurrent convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 1015–1028 (2017)
Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)
Isobe, T., Jia, X., Gu, S., Li, S., Wang, S., Tian, Q.: Video super-resolution with recurrent structure-detail network. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 645–660. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_38
Kim, D., Woo, S., Lee, J.Y., Kweon, I.S.: Deep video inpainting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5792–5801 (2019)
Kim, D., Woo, S., Lee, J.Y., Kweon, I.S.: Recurrent temporal aggregation framework for deep video inpainting. IEEE Trans. Pattern Anal. Mach. Intell. 42(5), 1038–1052 (2019)
Kim, Y., Soh, J.W., Park, G.Y., Cho, N.I.: Transfer learning from synthetic to real-noise denoising with adaptive instance normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3482–3492 (2020)
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kong, Z., Yang, X.: Color image and multispectral image denoising using block diagonal representation. IEEE Trans. Image Process. 28(9), 4247–4259 (2019)
Kong, Z., Yang, X., He, L.: A comprehensive comparison of multi-dimensional image denoising methods. arXiv preprint arXiv:2011.03462 (2020)
Liu, J., et al.: Learning raw image denoising with bayer pattern unification and bayer preserving augmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)
Liu, J., Yang, W., Yang, S., Guo, Z.: Erase or fill? deep joint recurrent rain removal and reconstruction in videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3233–3242 (2018)
Maggioni, M., Boracchi, G., Foi, A., Egiazarian, K.: Video denoising, deblocking, and enhancement through separable 4-d nonlocal spatiotemporal transforms. IEEE Trans. Image Process. 21(9), 3952–3966 (2012)
Maggioni, M., Huang, Y., Li, C., Xiao, S., Fu, Z., Song, F.: Efficient multi-stage video denoising with recurrent spatio-temporal fusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3466–3475 (2021)
Mildenhall, B., Barron, J.T., Chen, J., Sharlet, D., Ng, R., Carroll, R.: Burst denoising with kernel prediction networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2502–2510 (2018)
Nah, S., Son, S., Lee, K.M.: Recurrent neural networks with intra-frame iterations for video deblurring. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8102–8111 (2019)
Niklaus, S., Liu, F.: Softmax splatting for video frame interpolation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5437–5446 (2020)
Plotz, T., Roth, S.: Benchmarking denoising algorithms with real photographs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1586–1595 (2017)
Pont-Tuset, J., et al.: The 2017 davis challenge on video object segmentation. arXiv preprint arXiv:1704.00675 (2017)
Rong, X., Demandolx, D., Matzen, K., Chatterjee, P., Tian, Y.: Burst denoising via temporally shifted wavelet transforms. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 240–256. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_15
Sajjadi, M.S., Vemulapalli, R., Brown, M.: Frame-recurrent video super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6626–6634 (2018)
Shen, W., Bao, W., Zhai, G., Chen, L., Min, X., Gao, Z.: Blurry video frame interpolation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5114–5123 (2020)
Son, H., Lee, J., Lee, J., Cho, S., Lee, S.: Recurrent video deblurring with blur-invariant motion estimation and pixel volumes. ACM Trans. Graph. (TOG) 40(5), 1–18 (2021)
Sun, D., Yang, X., Liu, M.Y., Kautz, J.: Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8934–8943 (2018)
Tassano, M., Delon, J., Veit, T.: Dvdnet: A fast network for deep video denoising. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 1805–1809. IEEE (2019)
Tassano, M., Delon, J., Veit, T.: Fastdvdnet: Towards real-time deep video denoising without flow estimation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (June 2020)
Vaksman, G., Elad, M., Milanfar, P.: Patch craft: Video denoising by deep modeling and patch matching. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2157–2166 (October 2021)
Wang, X., Chan, K.C., Yu, K., Dong, C., Change Loy, C.: Edvr: Video restoration with enhanced deformable convolutional networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)
Xia, Z., Perazzi, F., Gharbi, M., Sunkavalli, K., Chakrabarti, A.: Basis prediction networks for effective burst denoising with large kernels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11844–11853 (2020)
Xiang, X., Tian, Y., Zhang, Y., Fu, Y., Allebach, J.P., Xu, C.: Zooming slow-mo: Fast and accurate one-stage space-time video super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3370–3379 (2020)
Xu, X., Li, M., Sun, W., Yang, M.H.: Learning spatial and spatio-temporal pixel aggregations for image and video denoising. IEEE Trans. Image Process. 29, 7153–7165 (2020)
Yang, W., Liu, J., Feng, J.: Frame-consistent recurrent video deraining with dual-level flow. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1661–1670 (2019)
Yang, W., Tan, R.T., Feng, J., Wang, S., Cheng, B., Liu, J.: Recurrent multi-frame deraining: Combining physics guidance and adversarial learning. IEEE Trans. Pattern Anal. Mach. Intell. 44, 8569–858 (2021)
Yue, H., Cao, C., Liao, L., Chu, R., Yang, J.: Supervised raw video denoising with a benchmark dataset on dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (June 2020)
Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)
Zhang, K., Zuo, W., Zhang, L.: Ffdnet: Toward a fast and flexible solution for cnn-based image denoising. IEEE Trans. Image Process. 27(9), 4608–4622 (2018)
Zhong, Z., Gao, Y., Zheng, Y., Zheng, B.: Efficient spatio-temporal recurrent neural network for video deblurring. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 191–207. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_12
Zhuo, S., Jin, Z., Zou, W., Li, X.: Ridnet: Recursive information distillation network for color image denoising. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)
Zoran, D., Weiss, Y.: From learning models of natural image patches to whole image restoration. In: 2011 International Conference on Computer Vision, pp. 479–486. IEEE (2011)
Acknowledgement
This work is partially supported by the National Natural Science Foundation of China (NSFC) under Grant No.s 62006064 and U19A2073.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, J., Wu, X., Niu, Z., Zuo, W. (2022). Unidirectional Video Denoising by Mimicking Backward Recurrent Modules with Look-Ahead Forward Ones. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13678. Springer, Cham. https://doi.org/10.1007/978-3-031-19797-0_34
Download citation
DOI: https://doi.org/10.1007/978-3-031-19797-0_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19796-3
Online ISBN: 978-3-031-19797-0
eBook Packages: Computer ScienceComputer Science (R0)