Skip to main content

Unidirectional Video Denoising by Mimicking Backward Recurrent Modules with Look-Ahead Forward Ones

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13678))

Included in the following conference series:

Abstract

While significant progress has been made in deep video denoising, it remains very challenging for exploiting historical and future frames. Bidirectional recurrent networks (BiRNN) have exhibited appealing performance in several video restoration tasks. However, BiRNN is intrinsically offline because it uses backward recurrent modules to propagate from the last to current frames, which causes high latency and large memory consumption. To address the offline issue of BiRNN, we present a novel recurrent network consisting of forward and look-ahead recurrent modules for unidirectional video denoising. Particularly, look-ahead module is an elaborate forward module for leveraging information from near-future frames. When denoising the current frame, the hidden features by forward and look-ahead recurrent modules are combined, thereby making it feasible to exploit both historical and near-future frames. Due to the scene motion between non-neighboring frames, border pixels missing may occur when warping look-ahead feature from near-future frame to current frame, which can be largely alleviated by incorporating forward warping and proposed border enlargement. Experiments show that our method achieves state-of-the-art performance with constant latency and memory consumption. Code is avaliable at https://github.com/nagejacob/FloRNN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdelhamed, A., Lin, S., Brown, M.S.: A high-quality denoising dataset for smartphone cameras. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1692–1700 (2018)

    Google Scholar 

  2. Arias, P., Morel, J.M.: Video denoising via empirical bayesian estimation of space-time patches. J. Math. Imaging and Vis. 60(1), 70–93 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 60–65. IEEE (2005)

    Google Scholar 

  4. Buades, A., Lisani, J.L., Miladinović, M.: Patch-based video denoising with optical flow estimation. IEEE Trans. Image Process. 25(6), 2573–2586 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chan, K.C., Wang, X., Yu, K., Dong, C., Loy, C.C.: Basicvsr: The search for essential components in video super-resolution and beyond. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4947–4956 (2021)

    Google Scholar 

  6. Chan, K.C., Zhou, S., Xu, X., Loy, C.C.: Basicvsr++: Improving video super-resolution with enhanced propagation and alignment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5972–5981 (2022)

    Google Scholar 

  7. Chen, X., Song, L., Yang, X.: Deep rnns for video denoising. In: Applications of digital image processing XXXIX, vol. 9971, p. 99711T. International Society for )ptics and Photonics (2016)

    Google Scholar 

  8. Claus, M., van Gemert, J.: Videnn: Deep blind video denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  9. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  10. Dai, J., et al.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 764–773 (2017)

    Google Scholar 

  11. Davy, A., Ehret, T., Morel, J.M., Arias, P., Facciolo, G.: A non-local cnn for video denoising. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 2409–2413. IEEE (2019)

    Google Scholar 

  12. Davy, A., Ehret, T., Morel, J.M., Arias, P., Facciolo, G.: Video denoising by combining patch search and cnns. J. Math. Imaging Vis. 63(1), 73–88 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dosovitskiy, A., et al.: Flownet: Learning optical flow with convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2758–2766 (2015)

    Google Scholar 

  14. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

  15. Fuoli, D., Gu, S., Timofte, R.: Efficient video super-resolution through recurrent latent space propagation. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 3476–3485. IEEE (2019)

    Google Scholar 

  16. Gu, S., Zhang, L., Zuo, W., Feng, X.: Weighted nuclear norm minimization with application to image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2862–2869 (2014)

    Google Scholar 

  17. Guo, S., Yan, Z., Zhang, K., Zuo, W., Zhang, L.: Toward convolutional blind denoising of real photographs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1712–1722 (2019)

    Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  19. Huang, Y., Wang, W., Wang, L.: Video super-resolution via bidirectional recurrent convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 1015–1028 (2017)

    Article  Google Scholar 

  20. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)

    Google Scholar 

  21. Isobe, T., Jia, X., Gu, S., Li, S., Wang, S., Tian, Q.: Video super-resolution with recurrent structure-detail network. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 645–660. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_38

    Chapter  Google Scholar 

  22. Kim, D., Woo, S., Lee, J.Y., Kweon, I.S.: Deep video inpainting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5792–5801 (2019)

    Google Scholar 

  23. Kim, D., Woo, S., Lee, J.Y., Kweon, I.S.: Recurrent temporal aggregation framework for deep video inpainting. IEEE Trans. Pattern Anal. Mach. Intell. 42(5), 1038–1052 (2019)

    Article  Google Scholar 

  24. Kim, Y., Soh, J.W., Park, G.Y., Cho, N.I.: Transfer learning from synthetic to real-noise denoising with adaptive instance normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3482–3492 (2020)

    Google Scholar 

  25. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  26. Kong, Z., Yang, X.: Color image and multispectral image denoising using block diagonal representation. IEEE Trans. Image Process. 28(9), 4247–4259 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kong, Z., Yang, X., He, L.: A comprehensive comparison of multi-dimensional image denoising methods. arXiv preprint arXiv:2011.03462 (2020)

  28. Liu, J., et al.: Learning raw image denoising with bayer pattern unification and bayer preserving augmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  29. Liu, J., Yang, W., Yang, S., Guo, Z.: Erase or fill? deep joint recurrent rain removal and reconstruction in videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3233–3242 (2018)

    Google Scholar 

  30. Maggioni, M., Boracchi, G., Foi, A., Egiazarian, K.: Video denoising, deblocking, and enhancement through separable 4-d nonlocal spatiotemporal transforms. IEEE Trans. Image Process. 21(9), 3952–3966 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Maggioni, M., Huang, Y., Li, C., Xiao, S., Fu, Z., Song, F.: Efficient multi-stage video denoising with recurrent spatio-temporal fusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3466–3475 (2021)

    Google Scholar 

  32. Mildenhall, B., Barron, J.T., Chen, J., Sharlet, D., Ng, R., Carroll, R.: Burst denoising with kernel prediction networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2502–2510 (2018)

    Google Scholar 

  33. Nah, S., Son, S., Lee, K.M.: Recurrent neural networks with intra-frame iterations for video deblurring. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8102–8111 (2019)

    Google Scholar 

  34. Niklaus, S., Liu, F.: Softmax splatting for video frame interpolation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5437–5446 (2020)

    Google Scholar 

  35. Plotz, T., Roth, S.: Benchmarking denoising algorithms with real photographs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1586–1595 (2017)

    Google Scholar 

  36. Pont-Tuset, J., et al.: The 2017 davis challenge on video object segmentation. arXiv preprint arXiv:1704.00675 (2017)

  37. Rong, X., Demandolx, D., Matzen, K., Chatterjee, P., Tian, Y.: Burst denoising via temporally shifted wavelet transforms. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 240–256. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_15

    Chapter  Google Scholar 

  38. Sajjadi, M.S., Vemulapalli, R., Brown, M.: Frame-recurrent video super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6626–6634 (2018)

    Google Scholar 

  39. Shen, W., Bao, W., Zhai, G., Chen, L., Min, X., Gao, Z.: Blurry video frame interpolation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5114–5123 (2020)

    Google Scholar 

  40. Son, H., Lee, J., Lee, J., Cho, S., Lee, S.: Recurrent video deblurring with blur-invariant motion estimation and pixel volumes. ACM Trans. Graph. (TOG) 40(5), 1–18 (2021)

    Article  Google Scholar 

  41. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8934–8943 (2018)

    Google Scholar 

  42. Tassano, M., Delon, J., Veit, T.: Dvdnet: A fast network for deep video denoising. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 1805–1809. IEEE (2019)

    Google Scholar 

  43. Tassano, M., Delon, J., Veit, T.: Fastdvdnet: Towards real-time deep video denoising without flow estimation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (June 2020)

    Google Scholar 

  44. Vaksman, G., Elad, M., Milanfar, P.: Patch craft: Video denoising by deep modeling and patch matching. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2157–2166 (October 2021)

    Google Scholar 

  45. Wang, X., Chan, K.C., Yu, K., Dong, C., Change Loy, C.: Edvr: Video restoration with enhanced deformable convolutional networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  46. Xia, Z., Perazzi, F., Gharbi, M., Sunkavalli, K., Chakrabarti, A.: Basis prediction networks for effective burst denoising with large kernels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11844–11853 (2020)

    Google Scholar 

  47. Xiang, X., Tian, Y., Zhang, Y., Fu, Y., Allebach, J.P., Xu, C.: Zooming slow-mo: Fast and accurate one-stage space-time video super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3370–3379 (2020)

    Google Scholar 

  48. Xu, X., Li, M., Sun, W., Yang, M.H.: Learning spatial and spatio-temporal pixel aggregations for image and video denoising. IEEE Trans. Image Process. 29, 7153–7165 (2020)

    Article  MATH  Google Scholar 

  49. Yang, W., Liu, J., Feng, J.: Frame-consistent recurrent video deraining with dual-level flow. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1661–1670 (2019)

    Google Scholar 

  50. Yang, W., Tan, R.T., Feng, J., Wang, S., Cheng, B., Liu, J.: Recurrent multi-frame deraining: Combining physics guidance and adversarial learning. IEEE Trans. Pattern Anal. Mach. Intell. 44, 8569–858 (2021)

    Google Scholar 

  51. Yue, H., Cao, C., Liao, L., Chu, R., Yang, J.: Supervised raw video denoising with a benchmark dataset on dynamic scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (June 2020)

    Google Scholar 

  52. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE Trans. Image Process. 26(7), 3142–3155 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhang, K., Zuo, W., Zhang, L.: Ffdnet: Toward a fast and flexible solution for cnn-based image denoising. IEEE Trans. Image Process. 27(9), 4608–4622 (2018)

    Article  MathSciNet  Google Scholar 

  54. Zhong, Z., Gao, Y., Zheng, Y., Zheng, B.: Efficient spatio-temporal recurrent neural network for video deblurring. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 191–207. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_12

    Chapter  Google Scholar 

  55. Zhuo, S., Jin, Z., Zou, W., Li, X.: Ridnet: Recursive information distillation network for color image denoising. In: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  56. Zoran, D., Weiss, Y.: From learning models of natural image patches to whole image restoration. In: 2011 International Conference on Computer Vision, pp. 479–486. IEEE (2011)

    Google Scholar 

Download references

Acknowledgement

This work is partially supported by the National Natural Science Foundation of China (NSFC) under Grant No.s 62006064 and U19A2073.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohe Wu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 15128 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Wu, X., Niu, Z., Zuo, W. (2022). Unidirectional Video Denoising by Mimicking Backward Recurrent Modules with Look-Ahead Forward Ones. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13678. Springer, Cham. https://doi.org/10.1007/978-3-031-19797-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19797-0_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19796-3

  • Online ISBN: 978-3-031-19797-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics