Skip to main content

Event-Based Fusion for Motion Deblurring with Cross-modal Attention

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13678))

Included in the following conference series:

Abstract

Traditional frame-based cameras inevitably suffer from motion blur due to long exposure times. As a kind of bio-inspired camera, the event camera records the intensity changes in an asynchronous way with high temporal resolution, providing valid image degradation information within the exposure time. In this paper, we rethink the event-based image deblurring problem and unfold it into an end-to-end two-stage image restoration network. To effectively fuse event and image features, we design an event-image cross-modal attention module applied at multiple levels of our network, which allows to focus on relevant features from the event branch and filter out noise. We also introduce a novel symmetric cumulative event representation specifically for image deblurring as well as an event mask gated connection between the two stages of our network which helps avoid information loss. At the dataset level, to foster event-based motion deblurring and to facilitate evaluation on challenging real-world images, we introduce the Real Event Blur (REBlur) dataset, captured with an event camera in an illumination-controlled optical laboratory. Our Event Fusion Network (EFNet) sets the new state of the art in motion deblurring, surpassing both the prior best-performing image-based method and all event-based methods with public implementations on the GoPro dataset (by up to 2.47 dB) and on our REBlur dataset, even in extreme blurry conditions. The code and our REBlur dataset are available at https://ahupujr.github.io/EFNet/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahad, M.A.R., Tan, J.K., Kim, H., Ishikawa, S.: Motion history image: its variants and applications. Mach. Vis. Appl. 23, 255–281 (2012)

    Article  Google Scholar 

  2. Bahat, Y., Efrat, N., Irani, M.: Non-uniform blind deblurring by reblurring. In: ICCV (2017)

    Google Scholar 

  3. Baldwin, R., Almatrafi, M., Asari, V., Hirakawa, K.: Event probability mask (EPM) and event denoising convolutional neural network (EDnCNN) for neuromorphic cameras. In: CVPR (2020)

    Google Scholar 

  4. Bardow, P., Davison, A.J., Leutenegger, S.: Simultaneous optical flow and intensity estimation from an event camera. In: CVPR (2016)

    Google Scholar 

  5. Brandli, C., Berner, R., Yang, M., Liu, S.C., Delbruck, T.: A 240 \(\times \) 180 130 dB 3 \(\mu \)s latency global shutter spatiotemporal vision sensor. IEEE J. Solid-State Circ. 49, 2333–2341 (2014)

    Article  Google Scholar 

  6. Chen, H., Teng, M., Shi, B., Wang, Y., Huang, T.: Learning to deblur and generate high frame rate video with an event camera. arXiv preprint arXiv:2003.00847 (2020)

  7. Chen, L., Chu, X., Zhang, X., Sun, J.: Simple baselines for image restoration. arXiv preprint arXiv:2204.04676 (2022)

  8. Chen, L., Lu, X., Zhang, J., Chu, X., Chen, C.: HINet: Half instance normalization network for image restoration. In: CVPRW (2021)

    Google Scholar 

  9. Cho, S.J., Ji, S.W., Hong, J.P., Jung, S.W., Ko, S.J.: Rethinking coarse-to-fine approach in single image deblurring. In: ICCV (2021)

    Google Scholar 

  10. Cho, S., Lee, S.: Fast motion deblurring. In: ACM Transactions on Graphics (2009)

    Google Scholar 

  11. Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph. In: ACM Transactions on Graphics (2006)

    Google Scholar 

  12. Gallego, G., et al.: Event-based vision: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44, 154–180 (2022)

    Article  Google Scholar 

  13. Gong, D., et al.: From motion blur to motion flow: a deep learning solution for removing heterogeneous motion blur. In: CVPR (2017)

    Google Scholar 

  14. Hendrycks, D., Gimpel, K.: Gaussian error linear units (GELUs). arXiv preprint arXiv:1606.08415 (2016)

  15. Jiang, Z., Zhang, Y., Zou, D., Ren, J., Lv, J., Liu, Y.: Learning event-based motion deblurring. In: CVPR (2020)

    Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  17. Kotera, J., Šroubek, F., Milanfar, P.: Blind deconvolution using alternating maximum a posteriori estimation with heavy-tailed priors. In: CAIP (2013)

    Google Scholar 

  18. Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity measure. In: CVPR (2011)

    Google Scholar 

  19. Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: DeblurGAN: blind motion deblurring using conditional adversarial networks. In: CVPR (2018)

    Google Scholar 

  20. Kupyn, O., Martyniuk, T., Wu, J., Wang, Z.: DeblurGAN-v2: deblurring (orders-of-magnitude) faster and better. In: ICCV (2019)

    Google Scholar 

  21. Lagorce, X., Orchard, G., Galluppi, F., Shi, B.E., Benosman, R.B.: HOTS: a hierarchy of event-based time-surfaces for pattern recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1346–1359 (2017)

    Article  Google Scholar 

  22. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding and evaluating blind deconvolution algorithms. In: CVPR (2009)

    Google Scholar 

  23. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Efficient marginal likelihood optimization in blind deconvolution. In: CVPR (2011)

    Google Scholar 

  24. Lin, S., Zhang, J., Pan, J., Jiang, Z., Zou, D., Wang, Y., Chen, J., Ren, J.: Learning event-driven video deblurring and interpolation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 695–710. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_41

    Chapter  Google Scholar 

  25. Liu, M., Delbruck, T.: Adaptive time-slice block-matching optical flow algorithm for dynamic vision sensors. In: BMVC (2018)

    Google Scholar 

  26. Maqueda, A.I., Loquercio, A., Gallego, G., García, N., Scaramuzza, D.: Event-based vision meets deep learning on steering prediction for self-driving cars. In: CVPR (2018)

    Google Scholar 

  27. Nah, S., Hyun Kim, T., Mu Lee, K.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: CVPR (2017)

    Google Scholar 

  28. Pan, L., Scheerlinck, C., Yu, X., Hartley, R., Liu, M., Dai, Y.: Bringing a blurry frame alive at high frame-rate with an event camera. In: CVPR (2019)

    Google Scholar 

  29. Paredes-Vallés, F., Scheper, K.Y.W., de Croon, G.C.H.E.: Unsupervised learning of a hierarchical spiking neural network for optical flow estimation: From events to global motion perception. IEEE Trans. Pattern Anal. Mach. Intell. 42, 2051–2064 (2020)

    Article  Google Scholar 

  30. Patrick, L., Posch, C., Delbruck, T.: A 128\(\times \)128 120 dB 15\(\mu \) s latency asynchronous temporal contrast vision sensor. IEEE J. Solid-State Circuits 43, 566–576 (2008)

    Article  Google Scholar 

  31. Purohit, K., Suin, M., Rajagopalan, A.N., Boddeti, V.N.: Spatially-adaptive image restoration using distortion-guided networks. In: ICCV (2021)

    Google Scholar 

  32. Rebecq, H., Gehrig, D., Scaramuzza, D.: ESIM: an open event camera simulator. In: CoLR (2018)

    Google Scholar 

  33. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  34. Scheerlinck, C., Barnes, N., Mahony, R.: Continuous-time intensity estimation using event cameras. In: ACCV (2018)

    Google Scholar 

  35. Shang, W., Ren, D., Zou, D., Ren, J.S., Luo, P., Zuo, W.: Bringing events into video deblurring with non-consecutively blurry frames. In: ICCV (2021)

    Google Scholar 

  36. Sironi, A., Brambilla, M., Bourdis, N., Lagorce, X., Benosman, R.: HATS: histograms of averaged time surfaces for robust event-based object classification. In: CVPR (2018)

    Google Scholar 

  37. Stoffregen, T., Kleeman, L.: Event cameras, contrast maximization and reward functions: An analysis. In: CVPR (2019)

    Google Scholar 

  38. Stoffregen, T., et al.: Reducing the sim-to-real gap for event cameras. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12372, pp. 534–549. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58583-9_32

    Chapter  Google Scholar 

  39. Suin, M., Purohit, K., Rajagopalan, A.N.: Spatially-attentive patch-hierarchical network for adaptive motion deblurring. In: CVPR (2020)

    Google Scholar 

  40. Sun, J., Cao, W., Xu, Z., Ponce, J.: Learning a convolutional neural network for non-uniform motion blur removal. In: CVPR (2015)

    Google Scholar 

  41. Tao, X., Gao, H., Shen, X., Wang, J., Jia, J.: Scale-recurrent network for deep image deblurring. In: CVPR (2018)

    Google Scholar 

  42. Tsai, F.J., Peng, Y.T., Lin, Y.Y., Tsai, C.C., Lin, C.W.: BANet: blur-aware attention networks for dynamic scene deblurring. arXiv preprint arXiv:2101.07518 (2021)

  43. Wang, L., I., S.M.M., Ho, Y., Yoon, K.: Event-based high dynamic range image and very high frame rate video generation using conditional generative adversarial networks. In: CVPR (2019)

    Google Scholar 

  44. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  Google Scholar 

  45. Wang, Z., Ng, Y., van Goor, P., Mahony, R.: Event camera calibration of per-pixel biased contrast threshold. In: ACRA (2019)

    Google Scholar 

  46. Weikersdorfer, D., Conradt, J.: Event-based particle filtering for robot self-localization. In: ROBIO (2012)

    Google Scholar 

  47. Xu, F., et al.: Motion deblurring with real events. In: ICCV (2021)

    Google Scholar 

  48. Xu, L., Zheng, S., Jia, J.: Unnatural L0 sparse representation for natural image deblurring. In: CVPR (2013)

    Google Scholar 

  49. Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H.: Restormer: efficient transformer for high-resolution image restoration. In: CVPR (2022)

    Google Scholar 

  50. Zamir, S.W., et al.: Multi-stage progressive image restoration. In: CVPR (2021)

    Google Scholar 

  51. Zhang, H., Dai, Y., Li, H., Koniusz, P.: Deep stacked hierarchical multi-patch network for image deblurring. In: CVPR (2019)

    Google Scholar 

  52. Zhang, J., et al.: Dynamic scene deblurring using spatially variant recurrent neural networks. In: CVPR (2018)

    Google Scholar 

  53. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26, 3142–3155 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  54. Zhou, S., Zhang, J., Pan, J., Xie, H., Zuo, W., Ren, J.: Spatio-temporal filter adaptive network for video deblurring. In: ICCV (2019)

    Google Scholar 

  55. Zhu, A.Z., Yuan, L., Chaney, K., Daniilidis, K.: Unsupervised event-based learning of optical flow, depth, and egomotion. In: CVPR (2019)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant No.12174341, Sunny Optical Technology (group) co., Ltd, and the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaiwei Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 16202 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, L. et al. (2022). Event-Based Fusion for Motion Deblurring with Cross-modal Attention. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13678. Springer, Cham. https://doi.org/10.1007/978-3-031-19797-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19797-0_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19796-3

  • Online ISBN: 978-3-031-19797-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics