Abstract
Traditional frame-based cameras inevitably suffer from motion blur due to long exposure times. As a kind of bio-inspired camera, the event camera records the intensity changes in an asynchronous way with high temporal resolution, providing valid image degradation information within the exposure time. In this paper, we rethink the event-based image deblurring problem and unfold it into an end-to-end two-stage image restoration network. To effectively fuse event and image features, we design an event-image cross-modal attention module applied at multiple levels of our network, which allows to focus on relevant features from the event branch and filter out noise. We also introduce a novel symmetric cumulative event representation specifically for image deblurring as well as an event mask gated connection between the two stages of our network which helps avoid information loss. At the dataset level, to foster event-based motion deblurring and to facilitate evaluation on challenging real-world images, we introduce the Real Event Blur (REBlur) dataset, captured with an event camera in an illumination-controlled optical laboratory. Our Event Fusion Network (EFNet) sets the new state of the art in motion deblurring, surpassing both the prior best-performing image-based method and all event-based methods with public implementations on the GoPro dataset (by up to 2.47 dB) and on our REBlur dataset, even in extreme blurry conditions. The code and our REBlur dataset are available at https://ahupujr.github.io/EFNet/.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahad, M.A.R., Tan, J.K., Kim, H., Ishikawa, S.: Motion history image: its variants and applications. Mach. Vis. Appl. 23, 255–281 (2012)
Bahat, Y., Efrat, N., Irani, M.: Non-uniform blind deblurring by reblurring. In: ICCV (2017)
Baldwin, R., Almatrafi, M., Asari, V., Hirakawa, K.: Event probability mask (EPM) and event denoising convolutional neural network (EDnCNN) for neuromorphic cameras. In: CVPR (2020)
Bardow, P., Davison, A.J., Leutenegger, S.: Simultaneous optical flow and intensity estimation from an event camera. In: CVPR (2016)
Brandli, C., Berner, R., Yang, M., Liu, S.C., Delbruck, T.: A 240 \(\times \) 180 130 dB 3 \(\mu \)s latency global shutter spatiotemporal vision sensor. IEEE J. Solid-State Circ. 49, 2333–2341 (2014)
Chen, H., Teng, M., Shi, B., Wang, Y., Huang, T.: Learning to deblur and generate high frame rate video with an event camera. arXiv preprint arXiv:2003.00847 (2020)
Chen, L., Chu, X., Zhang, X., Sun, J.: Simple baselines for image restoration. arXiv preprint arXiv:2204.04676 (2022)
Chen, L., Lu, X., Zhang, J., Chu, X., Chen, C.: HINet: Half instance normalization network for image restoration. In: CVPRW (2021)
Cho, S.J., Ji, S.W., Hong, J.P., Jung, S.W., Ko, S.J.: Rethinking coarse-to-fine approach in single image deblurring. In: ICCV (2021)
Cho, S., Lee, S.: Fast motion deblurring. In: ACM Transactions on Graphics (2009)
Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph. In: ACM Transactions on Graphics (2006)
Gallego, G., et al.: Event-based vision: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44, 154–180 (2022)
Gong, D., et al.: From motion blur to motion flow: a deep learning solution for removing heterogeneous motion blur. In: CVPR (2017)
Hendrycks, D., Gimpel, K.: Gaussian error linear units (GELUs). arXiv preprint arXiv:1606.08415 (2016)
Jiang, Z., Zhang, Y., Zou, D., Ren, J., Lv, J., Liu, Y.: Learning event-based motion deblurring. In: CVPR (2020)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
Kotera, J., Šroubek, F., Milanfar, P.: Blind deconvolution using alternating maximum a posteriori estimation with heavy-tailed priors. In: CAIP (2013)
Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity measure. In: CVPR (2011)
Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: DeblurGAN: blind motion deblurring using conditional adversarial networks. In: CVPR (2018)
Kupyn, O., Martyniuk, T., Wu, J., Wang, Z.: DeblurGAN-v2: deblurring (orders-of-magnitude) faster and better. In: ICCV (2019)
Lagorce, X., Orchard, G., Galluppi, F., Shi, B.E., Benosman, R.B.: HOTS: a hierarchy of event-based time-surfaces for pattern recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1346–1359 (2017)
Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding and evaluating blind deconvolution algorithms. In: CVPR (2009)
Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Efficient marginal likelihood optimization in blind deconvolution. In: CVPR (2011)
Lin, S., Zhang, J., Pan, J., Jiang, Z., Zou, D., Wang, Y., Chen, J., Ren, J.: Learning event-driven video deblurring and interpolation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 695–710. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_41
Liu, M., Delbruck, T.: Adaptive time-slice block-matching optical flow algorithm for dynamic vision sensors. In: BMVC (2018)
Maqueda, A.I., Loquercio, A., Gallego, G., García, N., Scaramuzza, D.: Event-based vision meets deep learning on steering prediction for self-driving cars. In: CVPR (2018)
Nah, S., Hyun Kim, T., Mu Lee, K.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: CVPR (2017)
Pan, L., Scheerlinck, C., Yu, X., Hartley, R., Liu, M., Dai, Y.: Bringing a blurry frame alive at high frame-rate with an event camera. In: CVPR (2019)
Paredes-Vallés, F., Scheper, K.Y.W., de Croon, G.C.H.E.: Unsupervised learning of a hierarchical spiking neural network for optical flow estimation: From events to global motion perception. IEEE Trans. Pattern Anal. Mach. Intell. 42, 2051–2064 (2020)
Patrick, L., Posch, C., Delbruck, T.: A 128\(\times \)128 120 dB 15\(\mu \) s latency asynchronous temporal contrast vision sensor. IEEE J. Solid-State Circuits 43, 566–576 (2008)
Purohit, K., Suin, M., Rajagopalan, A.N., Boddeti, V.N.: Spatially-adaptive image restoration using distortion-guided networks. In: ICCV (2021)
Rebecq, H., Gehrig, D., Scaramuzza, D.: ESIM: an open event camera simulator. In: CoLR (2018)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Scheerlinck, C., Barnes, N., Mahony, R.: Continuous-time intensity estimation using event cameras. In: ACCV (2018)
Shang, W., Ren, D., Zou, D., Ren, J.S., Luo, P., Zuo, W.: Bringing events into video deblurring with non-consecutively blurry frames. In: ICCV (2021)
Sironi, A., Brambilla, M., Bourdis, N., Lagorce, X., Benosman, R.: HATS: histograms of averaged time surfaces for robust event-based object classification. In: CVPR (2018)
Stoffregen, T., Kleeman, L.: Event cameras, contrast maximization and reward functions: An analysis. In: CVPR (2019)
Stoffregen, T., et al.: Reducing the sim-to-real gap for event cameras. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12372, pp. 534–549. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58583-9_32
Suin, M., Purohit, K., Rajagopalan, A.N.: Spatially-attentive patch-hierarchical network for adaptive motion deblurring. In: CVPR (2020)
Sun, J., Cao, W., Xu, Z., Ponce, J.: Learning a convolutional neural network for non-uniform motion blur removal. In: CVPR (2015)
Tao, X., Gao, H., Shen, X., Wang, J., Jia, J.: Scale-recurrent network for deep image deblurring. In: CVPR (2018)
Tsai, F.J., Peng, Y.T., Lin, Y.Y., Tsai, C.C., Lin, C.W.: BANet: blur-aware attention networks for dynamic scene deblurring. arXiv preprint arXiv:2101.07518 (2021)
Wang, L., I., S.M.M., Ho, Y., Yoon, K.: Event-based high dynamic range image and very high frame rate video generation using conditional generative adversarial networks. In: CVPR (2019)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)
Wang, Z., Ng, Y., van Goor, P., Mahony, R.: Event camera calibration of per-pixel biased contrast threshold. In: ACRA (2019)
Weikersdorfer, D., Conradt, J.: Event-based particle filtering for robot self-localization. In: ROBIO (2012)
Xu, F., et al.: Motion deblurring with real events. In: ICCV (2021)
Xu, L., Zheng, S., Jia, J.: Unnatural L0 sparse representation for natural image deblurring. In: CVPR (2013)
Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H.: Restormer: efficient transformer for high-resolution image restoration. In: CVPR (2022)
Zamir, S.W., et al.: Multi-stage progressive image restoration. In: CVPR (2021)
Zhang, H., Dai, Y., Li, H., Koniusz, P.: Deep stacked hierarchical multi-patch network for image deblurring. In: CVPR (2019)
Zhang, J., et al.: Dynamic scene deblurring using spatially variant recurrent neural networks. In: CVPR (2018)
Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26, 3142–3155 (2017)
Zhou, S., Zhang, J., Pan, J., Xie, H., Zuo, W., Ren, J.: Spatio-temporal filter adaptive network for video deblurring. In: ICCV (2019)
Zhu, A.Z., Yuan, L., Chaney, K., Daniilidis, K.: Unsupervised event-based learning of optical flow, depth, and egomotion. In: CVPR (2019)
Acknowledgments
This work was supported by the National Natural Science Foundation of China (NSFC) under Grant No.12174341, Sunny Optical Technology (group) co., Ltd, and the China Scholarship Council.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sun, L. et al. (2022). Event-Based Fusion for Motion Deblurring with Cross-modal Attention. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13678. Springer, Cham. https://doi.org/10.1007/978-3-031-19797-0_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-19797-0_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19796-3
Online ISBN: 978-3-031-19797-0
eBook Packages: Computer ScienceComputer Science (R0)